Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Fast Target Prediction of Human Reaching Motion for Cooperative Human-Robot Manipulation Tasks

  • cdarpino
  • 2014-10-14
  • 767
Fast Target Prediction of Human Reaching Motion for Cooperative Human-Robot Manipulation Tasks
Massachusetts Institute Of Technology (College/University)Robotics (Industry)Automation (Industry)CSAIL
  • ok logo

Скачать Fast Target Prediction of Human Reaching Motion for Cooperative Human-Robot Manipulation Tasks бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Fast Target Prediction of Human Reaching Motion for Cooperative Human-Robot Manipulation Tasks или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Fast Target Prediction of Human Reaching Motion for Cooperative Human-Robot Manipulation Tasks бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Fast Target Prediction of Human Reaching Motion for Cooperative Human-Robot Manipulation Tasks

Claudia Pérez-D'Arpino, Julie A. Shah. Fast Target Prediction of Human Reaching Motion for Cooperative Human-Robot Manipulation Tasks Using Time Series Classification. 2015 IEEE International Conference on Robotics and Automation (ICRA 2015).

Abstract:
Interest in human-robot coexistence, in which humans and robots share a common work volume, is increasing in manufacturing environments. Efficient work coordination requires both awareness of the human pose and a plan of action for both human and robot agents in order to compute robot motion trajectories that synchronize naturally with human motion. In this paper, we present a data-driven approach that synthesizes anticipatory knowledge of both human motions and subsequent action steps in order to predict in real-time the intended target of a human performing a reaching motion. Motion-level anticipatory models are constructed using multiple demonstrations of human reaching motions. We produce a library of motions from human demonstrations, based on a statistical representation of the degrees of freedom of the human arm, using time series analysis, wherein each time step is encoded as a multivariate Gaussian distribution. We demonstrate the benefits of this approach through offline statistical analysis of human motion data. The results indicate a considerable improvement over prior techniques in early prediction, achieving 70% or higher correct classification on average for the first third of the trajectory. We also indicate proof-of-concept through the demonstration of a human-robot cooperative manipulation task performed with a PR2 robot. We analyze the quality of task-level anticipatory knowledge required to improve prediction performance early in the motion trajectory.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]