Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Build a 3D Robotic Arm Simulator in Python |Reinforcement Learning & Analytical Inverse Kinematics

  • Reza Nadimi
  • 2025-08-09
  • 34
Build a 3D Robotic Arm Simulator in Python |Reinforcement Learning & Analytical Inverse Kinematics
  • ok logo

Скачать Build a 3D Robotic Arm Simulator in Python |Reinforcement Learning & Analytical Inverse Kinematics бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Build a 3D Robotic Arm Simulator in Python |Reinforcement Learning & Analytical Inverse Kinematics или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Build a 3D Robotic Arm Simulator in Python |Reinforcement Learning & Analytical Inverse Kinematics бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Build a 3D Robotic Arm Simulator in Python |Reinforcement Learning & Analytical Inverse Kinematics

Dive into the world of robotics and artificial intelligence as we build and compare two powerful methods for controlling a 3D robotic arm in a simulated environment! In this video, we explore both a classical, mathematical approach and a modern, machine learning-based solution.

*What you'll see in this video:*

*Analytical Inverse Kinematics (IK):* Watch a robotic arm use a precise, direct mathematical solver to instantly calculate the joint angles needed to reach a moving target. See how it handles complex movements and singularities with ease.
*Deep Reinforcement Learning (DQN):* Witness a Deep Q-Network (DQN) agent learn from scratch how to control the same robotic arm. The agent learns through trial and error, getting a reward for getting closer to the target and a penalty for moving away.
*Head-to-Head Comparison:* We'll compare the performance, strengths, and weaknesses of both methods, highlighting the difference between a model-based and a data-driven approach.

This project is a perfect example of how different engineering and AI paradigms can be applied to the same problem. Whether you're a robotics enthusiast, a machine learning student, or a Python developer, you'll find something valuable here.

---

*Project Details & Code*

The full source code for this project is available on GitHub. Feel free to clone the repository, run the simulations, and experiment with the code yourself!

*Code is available here:* https:// github.com/rezaxr14/3D-Robot-Control-RL-Analytical.git

---

*Technologies Used*

*Python 3:* The core language for the entire project.
*PyTorch:* The deep learning framework used to build and train the DQN agent.
*Gymnasium:* Provides the standardized environment for the reinforcement learning agent.
*NumPy:* For all numerical and mathematical computations.
*Matplotlib:* For the real-time 3D visualization of the robotic arm.

---

*How to Run the Code*

1. *Clone the repository:*
```bash
git clone https:// github.com/rezaxr14/3D-Robot-Control-RL-Analytical.git
cd 3D-Robot-Control-RL-Analytical
```
2. *Install dependencies:*
```bash
pip install -r requirements.txt
```
3. *Run the Inverse Kinematics demo:*
```bash
cd Analytical_Inverse_Kinematics
python main.py
```
4. *Train the RL agent:*
```bash
cd RL_Double_Dueling_DQN
python train.py
```
5. *Test the trained RL agent:*
```bash
cd RL_Double_Dueling_DQN
python test.py
```

Thanks for watching! If you enjoyed this video, please like, subscribe, and share it with others. Let me know in the comments which method you found more interesting!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]