Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transforming Your CSV Files: Drop Columns and Reorder Data in R

  • vlogize
  • 2025-05-17
  • 0
Transforming Your CSV Files: Drop Columns and Reorder Data in R
Drop columns and order the data by a specific columns' namesdataframe
  • ok logo

Скачать Transforming Your CSV Files: Drop Columns and Reorder Data in R бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transforming Your CSV Files: Drop Columns and Reorder Data in R или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transforming Your CSV Files: Drop Columns and Reorder Data in R бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transforming Your CSV Files: Drop Columns and Reorder Data in R

Learn how to effectively `drop columns` and `reorder data` in R using `data.table`, `tidyverse`, and `Base R` with practical examples!
---
This video is based on the question https://stackoverflow.com/q/72647349/ asked by the user 'Fede R' ( https://stackoverflow.com/u/17149882/ ) and on the answer https://stackoverflow.com/a/72648089/ provided by the user 'Edo' ( https://stackoverflow.com/u/9918265/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Drop columns and order the data by a specific columns' names

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Transforming Your CSV Files: Drop Columns and Reorder Data in R

If you've ever found yourself needing to manage and transform data from CSV files, you are not alone. One common task that arises is needing to drop certain columns and reorder your data according to specific criteria. Whether you're just starting out or you've been handling data for a while, this guide will help you navigate through the process using R.

The Problem

Imagine you have multiple CSV files containing data structured like this:

[[See Video to Reveal this Text or Code Snippet]]

You want to:

Load these files into a data frame.

Drop the ExamTitle column.

Reshape the data so that the unique values in the ParametersName column become separate columns, with ParametersValue as their corresponding values.

Let’s explore various solutions to achieve this!

Solution with data.table

The data.table package is a powerful tool in R for data manipulation. Here's how to use it to drop a column and reshape your data:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

rbindlist: Combines multiple data frames into one, where you can specify columns to drop.

dcast: Reshapes the data frame, converting unique values in ParametersName into separate columns.

Solution with tidyverse

If you prefer a more streamlined approach, the tidyverse provides an intuitive way to transform your data:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

map_df: Reads multiple CSV files and combines them while adding an identifier column.

select: Removes the unwanted ExamTitle column.

pivot_wider: Expands the data frame to create separate columns for each unique ParametersName.

Solution with Base R

For those who prefer sticking to base R functions, you can also achieve this reshaping in a concise way:

[[See Video to Reveal this Text or Code Snippet]]

Explanation:

lapply: Applies read.csv2 to each file and combines them.

Reduce: Successively applies rbind to each resulting data frame.

unstack: Converts the data frame to a wide format based on the specified formula.

Reproducible Example

To help you practice and test the code, here’s a small reproducible example:

[[See Video to Reveal this Text or Code Snippet]]

By using the above methods, you can easily manage your CSV files and transform them into a usable format for your analyses.

Conclusion

Transforming your CSV data can seem daunting, but with the right tools in R, it's completely manageable. Whether you choose to work with data.table, tidyverse, or even base R, you have various options to suit your preferences and project requirements. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]