Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Conditionally Mutate Based on Partial String Matches in R Data Frames

  • vlogize
  • 2025-05-28
  • 3
How to Conditionally Mutate Based on Partial String Matches in R Data Frames
Conditionally mutate on partial string match across data frames of different lengths R/dplyr/stringrdplyrstringr
  • ok logo

Скачать How to Conditionally Mutate Based on Partial String Matches in R Data Frames бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Conditionally Mutate Based on Partial String Matches in R Data Frames или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Conditionally Mutate Based on Partial String Matches in R Data Frames бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Conditionally Mutate Based on Partial String Matches in R Data Frames

Learn how to efficiently create a new column in R data frames to identify matches based on partial string detection with the help of `dplyr` and `stringr`.
---
This video is based on the question https://stackoverflow.com/q/67479976/ asked by the user 'Courtney Gerver' ( https://stackoverflow.com/u/9905701/ ) and on the answer https://stackoverflow.com/a/67480023/ provided by the user 'LMc' ( https://stackoverflow.com/u/6382434/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Conditionally mutate on partial string match across data frames of different lengths R/dplyr/stringr

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Introduction

Managing and analyzing data often involves comparing strings across different datasets. In R, particularly when using the dplyr and stringr packages, you may encounter situations where you need to identify if elements from one data frame appear within another, especially when they don’t perfectly match. For instance, you might have a list of names and want to check if any of those names appear in a list of job descriptions. This can be particularly tricky if the two datasets have different lengths and formats.

In this guide, we'll break down a common problem where you want to create a new column in one data frame based on whether names in another data frame appear within a string. We'll use the NameDF and JobDF data frames as examples to showcase how to resolve this challenge.

Problem Statement

Imagine you have two data frames:

Data Frames

NameDF: This data frame lists names.

[[See Video to Reveal this Text or Code Snippet]]

JobDF: This data frame contains various job descriptions.

[[See Video to Reveal this Text or Code Snippet]]

Your objective is to create a new column in JobDF named inNameDF that indicates "yes" if a name from NameDF appears in the occupation strings, or "no" if it does not.

Desired Output

Your desired output would look something like this:

[[See Video to Reveal this Text or Code Snippet]]

Solution Explained

To solve this, we can utilize the mutate function from the dplyr package combined with str_detect from stringr. Here’s how we can go about it:

Step 1: Concatenate Names

First, we need to concatenate the names in NameDF into a single pattern using paste0, which will create a regular expression string that matches any of the names.

[[See Video to Reveal this Text or Code Snippet]]

This pattern checks if any entry in occupation contains either "Jane" or "John".

Step 2: Use mutate and str_detect

Now, we can use the mutate function to add the inNameDF column to JobDF based on our pattern.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Case Sensitivity (Optional)

If you want to ensure the matching is case insensitive, wrap the pattern in stringr::regex like this:

[[See Video to Reveal this Text or Code Snippet]]

Alternative Method: First Word Checking

In cases where you know that the name will always be the first word in the occupation, you can simplify the approach by just extracting the first word.

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In this guide, we explored how to conditionally create new columns in R data frames based on partial string matches. By leveraging dplyr and stringr, we can efficiently manipulate and analyze datasets, even when they vary in length and complexity.

Remember, understanding string operations is crucial when dealing with textual data, and R provides powerful packages to help streamline this process. Experiment with different datasets and see how these techniques can benefit your data analysis workflow!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]