Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Find the Smallest Circle Using Recursion in Python

  • vlogize
  • 2025-05-26
  • 1
How to Find the Smallest Circle Using Recursion in Python
Return the smallest circle in the from the list of circlespythonrecursion
  • ok logo

Скачать How to Find the Smallest Circle Using Recursion in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Find the Smallest Circle Using Recursion in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Find the Smallest Circle Using Recursion in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Find the Smallest Circle Using Recursion in Python

Learn how to efficiently find the center of the smallest circle among a set of circles using recursion in Python. This guide dives into the solution and provides a clear step-by-step approach.
---
This video is based on the question https://stackoverflow.com/q/70440590/ asked by the user 'Ender' ( https://stackoverflow.com/u/15209742/ ) and on the answer https://stackoverflow.com/a/70524432/ provided by the user 'Ender' ( https://stackoverflow.com/u/15209742/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Return the smallest circle in the from the list of circles

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Finding the Smallest Circle Using Recursion in Python

When working with geometrical shapes in programming, it's not uncommon to encounter challenges related to finding specific properties of those shapes. One common problem that arises is determining the center of the smallest circle among a set of circles given certain characteristics. In this post, we will explore how to tackle this problem using recursion in Python.

Understanding the Problem

You are tasked with finding the center of the smallest circle from a list of circles defined by their coordinates. Each circle has a specified radius, and their relationships are defined such that some circles can be "inside" others. The challenge lies in correctly implementing a recursive function that will return the center of the circle with the smallest radius.

In a given scenario, you might have a function that retrieves the radius of a circle based on its coordinates, and another function that returns the centers of all circles that are directly inside a specified circle. Here’s a quick overview of how you might define these functions in Python:

[[See Video to Reveal this Text or Code Snippet]]

The Current Approach

You've attempted to find the smallest circle with the following function:

[[See Video to Reveal this Text or Code Snippet]]

However, this approach didn’t yield the expected results. Instead, it returned a different coordinate than the one anticipated. To gain clarity, let’s break down the solution step by step.

Correcting the Approach

To properly find the coordinates of the smallest circle, we need to modify the function to check both the radius of the current circle and the smallest circle found within its contained circles. The revised function should look like this:

[[See Video to Reveal this Text or Code Snippet]]

Here’s how this works:

Breakdown of the Solution

Combine the Current Circle and Inside Circles: The smallest function creates a list that contains the current circle's coordinates ([coord]) along with the coordinates of all circles that are inside it ([smallest(x) for x in inside(coord)]). This allows us to consider not just the immediate children circles, but also their descendants recursively.

Determine the Minimum: The min function is then employed to find the minimum based on the radius defined by the function r. By using key=r, we specify that the comparison for finding the minimum should be based on the radius of each circle.

Thus, the revised function correctly identifies the smallest circle, returning the expected coordinates.

Conclusion

By utilizing recursion effectively, you can successfully navigate through complex relationships between circles and determine their respective properties. This method not only simplifies your code but enhances its efficiency by ensuring that each circle is evaluated with its entire hierarchy taken into account.

With this approach, you're not just answering a mathematical query; you're also engaging in a deeper understanding of how recursive processes operate within programming. The power of recursion allows for elegant solutions to challenging problems, as demonstrated by the task of finding the smallest circle in a nested structure.

Feel free to implement this solution and explore further variations or extensions to the problem. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]