Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Calculate the Supply and Demand Ratio in Apache Spark Using Window Operations

  • vlogize
  • 2025-10-09
  • 2
How to Calculate the Supply and Demand Ratio in Apache Spark Using Window Operations
Apache Spark - How to design own aggregation with Window Operations on Event Timeapache sparkspark structured streaming
  • ok logo

Скачать How to Calculate the Supply and Demand Ratio in Apache Spark Using Window Operations бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Calculate the Supply and Demand Ratio in Apache Spark Using Window Operations или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Calculate the Supply and Demand Ratio in Apache Spark Using Window Operations бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Calculate the Supply and Demand Ratio in Apache Spark Using Window Operations

Learn how to effectively compute the `supply and demand ratio` in Apache Spark with window operations. This comprehensive guide walks you through transforming your data and using aggregation to achieve your desired results.
---
This video is based on the question https://stackoverflow.com/q/64694680/ asked by the user 'Harry' ( https://stackoverflow.com/u/10849339/ ) and on the answer https://stackoverflow.com/a/64720244/ provided by the user 'SD3' ( https://stackoverflow.com/u/14058000/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Apache Spark - How to design own aggregation with Window Operations on Event Time

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Introduction

Calculating the supply and demand ratio is essential for understanding dynamics in various fields, including transportation and logistics. In this post, we will explore how to compute this ratio using Apache Spark, particularly focusing on how to utilize window operations on event time data. We'll take a hypothetical example to analyze a dataset containing information about pick-up and drop-off events, and then we'll proceed to break down the necessary steps to achieve our goal of reporting the ratio every five minutes within an hour.

Problem Breakdown

Our dataset records events with timestamps indicating pick-up and drop-off times, along with zone information. The required fields in our records are:

time_to_pick_up: The time when a ride was requested (PICK event).

time_to_drop_off: The time when the rider is dropped off (DROP event).

pick_up_location: The location where the ride was requested.

drop_off_location: The location where the rider was dropped off.

Example Data:

[[See Video to Reveal this Text or Code Snippet]]

In this scenario, we want to calculate the ratio of supply to demand based on the events generated, defined as follows:

Each PICK adds to the demand and supply (value: 1).

Each DROP counts as providing supply (value: 1).

The formula for calculating the ratio is given by:

[[See Video to Reveal this Text or Code Snippet]]

In our example, if we have two DROPS and one PICK, the ratio will be 2.

Solution Implementation

You can achieve the desired ratio calculation without writing custom aggregation. Instead, we will leverage the built-in capabilities of Spark, specifically using when, otherwise, groupBy, and agg methods. Let's set up the steps you need to take:

Step 1: Data Preparation

First, create a DataFrame from your streaming data. You can enrich the DataFrame by adding columns for demand and supply as follows:

[[See Video to Reveal this Text or Code Snippet]]

Resulting DataFrame:

The enriched DataFrame will now contain the calculated demand and supply columns for each event.

Step 2: Calculate Supply to Demand Ratio

Next, we can perform a window operation on the enriched DataFrame to calculate the supply to demand ratio.

Set a watermark for your timestamps and use the groupBy function with a window:

[[See Video to Reveal this Text or Code Snippet]]

Final Output:

Your resulting DataFrame will present the supply to demand ratio calculated every five minutes within one hour:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In this guide, we have walked through the necessary steps to calculate the supply and demand ratio within Apache Spark using window operations on event time data. Using built-in functions, we simplified the process without the need for complex custom aggregations. With this method, you can analyze ride-sharing or transport data efficiently while drawing meaningful insights from event logs. This approach can be tailored as per your specific dataset requirements, ensuring versatility in real-world applications.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]