Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Guy Hacohen - Principal Components Bias in Deep Neural Networks

  • HUJI Machine Learning Club
  • 2021-10-22
  • 145
Guy Hacohen - Principal Components Bias in Deep Neural Networks
  • ok logo

Скачать Guy Hacohen - Principal Components Bias in Deep Neural Networks бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Guy Hacohen - Principal Components Bias in Deep Neural Networks или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Guy Hacohen - Principal Components Bias in Deep Neural Networks бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Guy Hacohen - Principal Components Bias in Deep Neural Networks

Delivered on Thursday, October 14th 2021, 10:30 AM



Speaker
Guy Hacohen, HUJI

Title
Principal Components Bias in Deep Neural Networks

Abstract
Recent work suggests that convolutional neural networks of different architectures learn to classify images in the same order. To understand this phenomenon, we revisit the over-parametrized deep linear network model. Our asymptotic analysis, assuming that the hidden layers are wide enough, reveals that the convergence rate of this model's parameters is exponentially faster along directions corresponding to the larger principal components of the data, at a rate governed by the singular values. We term this convergence pattern the Principal Components bias (PC-bias). We empirically show how the PC-bias streamlines the order of learning of both linear and non-linear networks, more prominently at earlier stages of learning. We then compare our results to the simplicity bias, showing that both biases can be seen independently, and affect the order of learning in different ways. Finally, we discuss how the PC-bias may explain some benefits of early stopping and its connection to PCA, and why deep networks converge more slowly when given random labels.

paper:
https://arxiv.org/abs/2105.05553

Link to past lectures
   / @hujimachinelearningclub8982  

Online Calendar
Learning Club @ HUJI
https://www.google.com/calendar/embed...

Mailing List
subscription manager: http://mailman.cs.huji.ac.il/mailman/...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]