Ari Stern: Hybrid finite element methods preserving local symmetries and conservation laws

Описание к видео Ari Stern: Hybrid finite element methods preserving local symmetries and conservation laws

Abstract: Many PDEs arising in physical systems have symmetries and conservation laws that are local in space. However, classical finite element methods are described in terms of spaces of global functions, so it is difficult even to make sense of such local properties. In this talk, I will describe how hybrid finite element methods, based on non-overlapping domain decomposition, provide a way around this local-vs.-global obstacle. Specifically, I will discuss joint work with Robert McLachlan on multisymplectic hybridizable discontinuous Galerkin methods for Hamiltonian PDEs, as well as joint work with Yakov Berchenko-Kogan on symmetry-preserving hybrid finite element methods for gauge theory.

Recording during the thematic meeting "Symmetry and computations" the April 5, 2018 at the Centre International de Rencontres Mathématiques (Marseille, France)

Filmmaker: Guillaume Hennenfent

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities:
Chapter markers and keywords to watch the parts of your choice in the video
Videos enriched with abstracts, bibliographies, Mathematics Subject Classification
Multi-criteria search by author, title, tags, mathematical area

Комментарии

Информация по комментариям в разработке