Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Resample Data Only When Values are Present in Pandas DataFrames

  • vlogize
  • 2025-04-14
  • 1
How to Resample Data Only When Values are Present in Pandas DataFrames
Resampling data only if value is presentpythonpandasdataframenumpy
  • ok logo

Скачать How to Resample Data Only When Values are Present in Pandas DataFrames бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Resample Data Only When Values are Present in Pandas DataFrames или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Resample Data Only When Values are Present in Pandas DataFrames бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Resample Data Only When Values are Present in Pandas DataFrames

Learn how to efficiently resample your time series data in Pandas, ensuring that you only get meaningful zeroes and avoid fake zero entries!
---
This video is based on the question https://stackoverflow.com/q/73796570/ asked by the user 'MemeFast King' ( https://stackoverflow.com/u/19915841/ ) and on the answer https://stackoverflow.com/a/73796649/ provided by the user 'jezrael' ( https://stackoverflow.com/u/2901002/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Resampling data only if value is present

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Resample Data Only When Values are Present in Pandas DataFrames

Time series data analysis is a common task in data science. One of the critical operations performed during analyses is resampling the data to create meaningful insights over specified time intervals. However, a challenge arises when you encounter periods with no data, leading to misleading results, particularly when summing values over those periods. In this guide, we will address how to resample your data only when values are actually present using Python's powerful Pandas library.

Understanding the Problem

Imagine you have a DataFrame containing time series data representing certain measurements (like stock prices or sensor readings). When you want to analyze this data, you might need to resample it into 3-minute intervals and sum the values. However, if there's a period where the values are entirely missing, Pandas will still return a zero for that interval during resampling, leading to what we call fake zeroes in your results.

For example, consider the following data:

[[See Video to Reveal this Text or Code Snippet]]

When you resample this data for every 3 minutes and encounter time windows (like 09:33 - 09:36) that have no data present, the output will misleadingly indicate that the sum is zero when, in reality, there are just no entries contributing to that time slot.

The Solution

To rectify this situation, we have a straightforward solution. You can use the min_count parameter in the sum() function during the resampling process to ensure that at least one value contributes to the sum. If no values are present, we can simply drop those entries after the summation.

Step-by-Step Implementation

Convert Time to Timedelta:
Ensure that your time is in the right format using the pd.to_timedelta function.

[[See Video to Reveal this Text or Code Snippet]]

Resample the Data:
Resample the DataFrame to the desired frequency ('3Min' in this case).

[[See Video to Reveal this Text or Code Snippet]]

Check Your Results:
Use a print statement to view the processed DataFrame and confirm that only intervals with actual data present a sum.

Example Code

Here's how the complete code would look:

[[See Video to Reveal this Text or Code Snippet]]

Group Resampling

If you are working with groups in your DataFrame, ensure that you reset the index and group by any identifiers you have:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using the min_count argument with the sum() function, you can maintain the integrity of your time series data during resampling. This approach helps avoid misleading results that could arise from fake zero values in the absence of data. Keep this technique in mind when performing time series analyses to ensure your results are as accurate and meaningful as possible.

Using these steps, you can confidently handle missing data in your resampling and obtain correct analytical insights!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]