Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Is a Bloom Filter Faster Than Searching a Dictionary or List in Python?

  • vlogize
  • 2025-09-21
  • 0
Is a Bloom Filter Faster Than Searching a Dictionary or List in Python?
Will using a bloom filter be faster than searching a dictionary or list in Python?pythonarrayslistbloom filterbloom
  • ok logo

Скачать Is a Bloom Filter Faster Than Searching a Dictionary or List in Python? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Is a Bloom Filter Faster Than Searching a Dictionary or List in Python? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Is a Bloom Filter Faster Than Searching a Dictionary or List in Python? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Is a Bloom Filter Faster Than Searching a Dictionary or List in Python?

Discover whether using a `Bloom Filter` can speed up UUID searches compared to lists and dictionaries in Python, especially for large datasets.
---
This video is based on the question https://stackoverflow.com/q/62827441/ asked by the user 'dlystyr' ( https://stackoverflow.com/u/9050222/ ) and on the answer https://stackoverflow.com/a/62827477/ provided by the user 'Kelvin' ( https://stackoverflow.com/u/6765564/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Will using a bloom filter be faster than searching a dictionary or list in Python?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Speed of UUID Searches in Python

When working with large datasets, the efficiency of data retrieval can significantly affect the performance of your applications. If you have a file containing over 9,000 UUIDs representing assets in your company, figuring out the most efficient way to check for matches from another list of UUIDs becomes crucial. This leads us to the question: Will using a Bloom filter be faster than searching a dictionary or list in Python?

What is a Bloom Filter?

A Bloom filter is a space-efficient probabilistic data structure that helps in testing whether an element is a member of a set. This means it can quickly tell you if something is definitely not in the set. However, it does have its limitations:

False positives: It can say an element is in the set when it isn't.

No deletes: Once an element is added, you can’t remove it from the filter.

The Scenario: Why Consider a Bloom Filter?

In your case, you're trying to check if certain UUIDs match those in your list of 9,000+ assets. There are two choices to consider: using a Python list (or array) or employing a Bloom filter for this task.
Here’s a deeper look at both methods:

1. Searching in a List or Dictionary

List: Storing UUIDs in a simple list allows you to loop through and check for matches. However, searching through a list for each UUID can be time-consuming (O(n) complexity).

Dictionary: Python dictionaries, utilizing hash tables, provide an average lookup time of O(1), making them much faster for searching UUIDs.

2. Implementing a Bloom Filter

By using a Bloom filter, you will be able to eliminate UUIDs that are definitely not present in your list before performing any expensive lookups. For instance, if you are checking multiple UUIDs against your list, you can quickly filter out those that aren’t even a possibility.

The Verdict: Is a Bloom Filter Worth It?

While Bloom filters can be useful in certain cases, when it comes to working with large datasets in Python like your UUIDs:

Limited improvement: Since dictionary lookups are already fast and efficient due to their hashing mechanisms, implementing a Bloom filter may not yield substantial performance benefits.

Use case: If your application involves numerous expensive lookups or additional overhead for checking against other datasets, a Bloom filter could be beneficial. Otherwise, stick with a dictionary for optimal speed.

Conclusion

In summary, for your specific situation with over 9,000 UUIDs and the requirement to check for membership, using a dictionary seems to be the most efficient method. While learning about Bloom filters can be valuable for certain applications, it might not provide a significant advantage in your current use case. As always, it's essential to evaluate your specific requirements and test performance to make the most informed decision.

Consider your application's needs, and choose the data structure that offers the best trade-off between speed and complexity. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]