Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть tool demo2

  • xin yang
  • 2015-05-29
  • 71
tool demo2
  • ok logo

Скачать tool demo2 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно tool demo2 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку tool demo2 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео tool demo2

In this work, we introduce a method for automatic renal compartment segmentation from Dynamic Contrast-Enhanced MRI (DCE-MRI) images, which is an important problem but existing solutions cannot achieve high accuracy robustly for a wide range of data. The proposed method consists of three main steps. First, the whole kidney is segmented based on the concept of Maximally Stable Temporal Volume (MSTV). The proposed MSTV detects anatomical structures that are stable in both spatial domain and temporal dynamics. MSTV-based kidney segmentation is robust to noises and does not require a training phase. It can well adapt to kidney shape variations caused by renal dysfunction. Second, voxels in the segmented kidney are described by principal components (PCs) to remove temporal redundancy and noises. And then k-means clustering of PCs is applied to separate voxels into cortex, medulla and pelvis. Third, a refinement method is introduced to further remove noises in each segmented compartment. Experimental results on 16 clinical kidney datasets demonstrate that our method reaches a very high level of agreement with manual results and achieves superior performance to three existing baseline methods. The source code of the proposed method will be made publicly available with the publication of this paper.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]