Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Low latency Neural Network Inference for ML Ranking Applications Yelp Case Study

  • Toronto Machine Learning Society (TMLS)
  • 2023-08-17
  • 311
Low latency Neural Network Inference for ML Ranking Applications  Yelp Case Study
machine learningartificial intelligencedata sciencemachine learning simplifiedautomated machine learningdevelopersAutomated MLmlmachine learning operationsmlopseducation
  • ok logo

Скачать Low latency Neural Network Inference for ML Ranking Applications Yelp Case Study бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Low latency Neural Network Inference for ML Ranking Applications Yelp Case Study или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Low latency Neural Network Inference for ML Ranking Applications Yelp Case Study бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Low latency Neural Network Inference for ML Ranking Applications Yelp Case Study

Speakers:
Ryan Irwin, Engineering Manager, Yelp Inc.
Ryan Irwin is a senior engineering manager at Yelp. He leads the teams responsible for the ML Platform, which covers ML computing, feature engineering, model training, and model inference. Ryan has a Ph.D. in Computer Engineering from Virginia Tech.


Rajvinder Singh, Sr Product Manager, Yelp Inc.
Rajvinder is currently leading product for the CoreML Group, and was previously an Engineering Manager at Etsy where he lead the ML Platform team.


Abstract:
At Yelp, we train and deploy models for a variety of business applications requiring low-latency model inference. At first we focused on streamlining support for XGboost and LR models built in Spark to support business recommendations, search, ads, restaurants, and trust & safety use-cases. However, we didn’t have a way of supporting low-latency neural network models with Tensorflow. Such models usually relied on batched model inference in support of models used for photo classification [1] and popular dishes [2].

In this talk, we give an architectural overview of our ML Platform and how we overhauled it to support neural network models in low-latency ranking applications. We cover how we built in the capabilities to train and deploy Tensorflow-based models using MLEAP and cataloged them in MLFlow. We also discuss the deployment plugin that was using Elasticsearch and how this transitioned to using Yelp’s own near-real time search (Nrtsearch) [3] open-source framework. Lastly, we cover the issues faced along the way in terms of latency and model performance, including how we incorporate embedded features in the model.
[1] https://engineeringblog.yelp.com/2015...
[2] https://engineeringblog.yelp.com/2019...
[3] https://engineeringblog.yelp.com/2021...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]