Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction

  • ComputerVisionFoundation Videos
  • 2020-07-22
  • 1582
SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction
  • ok logo

Скачать SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео SILA: An Incremental Learning Approach for Pedestrian Trajectory Prediction

Authors: Golnaz Habibi, Nikita Jaipuria, Jonathan P. How Description: The prediction of pedestrian motion is challenging, especially in crowded roads and intersections. Most of the current approaches apply offline methods to learn motion behaviors, but as a result, they are not able to learn continuously and typically do not generalize well to new environments. This paper presents Similarity-based Incremental Learning Algorithm (SILA) for pedestrian motion prediction with the ability of improving the learned model over the time as data is obtained incrementally. To keep the model size efficient, the motion primitives learned from the new data are compared with the previously known ones, and similar motion primitives are fused while novel motion primitives are added to the model. Results show that the SILA model growth rate is about 1/3 that of an incremental approach that does not fuse motion primitives. SILA is evaluated on different datasets and scenarios including intersections and busy streets. The results show that, even though SILA learns incrementally, it performs comparably to (and sometimes outperforms) state-of-the-art algorithms in pedestrian prediction. Additionally, SILA learning time only depends on the size of the data added incrementally, which makes SILA more efficient in terms of time and space compared to batch learning.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]