Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Safe Reinforcement Learning in the Presence of Non-stationarity: Theory and Algorithms

  • AI Agent Frontier
  • 2023-07-02
  • 660
Safe Reinforcement Learning in the Presence of Non-stationarity: Theory and Algorithms
  • ok logo

Скачать Safe Reinforcement Learning in the Presence of Non-stationarity: Theory and Algorithms бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Safe Reinforcement Learning in the Presence of Non-stationarity: Theory and Algorithms или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Safe Reinforcement Learning in the Presence of Non-stationarity: Theory and Algorithms бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Safe Reinforcement Learning in the Presence of Non-stationarity: Theory and Algorithms

Abstract: Despite the successes of reinforcement learning (RL) in simulation-based systems such as video games and Go, the existing RL techniques are not yet applicable or are too risky to employ in real-world autonomous systems. Those applications often require safety assurance, and the underlying environment may undergo changes and be nonstationary. While both aspects have been tackled separately in the literature to some limited extent, there remains a substantial gap when these issues arise simultaneously, imposing challenges for the deployment of concurrent methods in real-world systems. To overcome these challenges and realize the full potential of RL for adaptability and performance gains, we develop a new mathematical foundation and a set of computational tools for the design of safe RL algorithms that can be deployed in environments that undergo changes. Along this line, we will present the following three objectives: (1) non-stationary constrained Markov decision processes, (2) non-stationary risk-sensitive RL, and (3) meta-safe RL.

Bio: Yuhao Ding is currently a fifth-year Ph.D. student at UC Berkeley - Operations Research department. His research interests include reinforcement learning, control theory, optimization, and statistical learning. During his Ph.D., he focuses on non-stationary sequential decision-making problems such as time-varying optimization, the global convergence of policy gradient methods, and non-stationary reinforcement learning.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]