Prove: i⁡(8⁡-⁡23i)⁡ = ⁡23 + ⁡8⁡i

Описание к видео Prove: i⁡(8⁡-⁡23i)⁡ = ⁡23 + ⁡8⁡i

Complex Numbers: Multiplication of two complex numbers. To prove i(8-23i) = 23 + 8i, take note that i = 0+i, start with the left-hand side members of the given equation. Multiply i to each two terms following the distributive law. Simplify until the right-hand side members of the given equation are obtained.

Take note, imaginary number i = √(-1) or (i^2) = -1.

Mharthy's Channel's Playlists:

Differential Calculus    • Prove f'(x) = nx^(n-1), if f(x) = x^n...  

Complex Numbers    • Prove:⁡⁡  (a⁡+⁡b⁡i)(c⁡+⁡d⁡i)⁡ = ⁡(ac⁡...  

Conversions    • Conversions  

Logarithms, etc.    • Logarithms, etc.  

Analytic Geometry    • Analytic Geometry  

Plane Trigonometry Basics    • Plane Trigonometry Basics  

Fractions    • Fractions  

Systems of first degree/linear equations    • Systems of first degree/linear equations  

Exponents and Radicals    • Exponents and Radicals  

Quadratic Equation and Formula, etc.    • Quadratic Equation and Formula, etc.  

Division of Polynomials, etc.    • Division of Polynomials, etc.  

The Binomial Theorem    • The Binomial Theorem  

Trigonometric Formulas    • Trigonometric Formulas  

The Exact Values of sin & cos Functions of a Right Triangle    • The Exact Values of sin and cos Funct...  

Trigonometric Identities 1    • Trigonometric Identities 1  

Trigonometric Identities 2    • Trigonometric Identities 2  

Trigonometric Identities 3    • Trigonometric Identities 3  

Комментарии

Информация по комментариям в разработке