Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть The computational theory of Riemann–Hilbert problems (Lecture 4) by Thomas Trogdon

  • International Centre for Theoretical Sciences
  • 2019-02-16
  • 671
The computational theory of Riemann–Hilbert problems (Lecture 4) by Thomas Trogdon
  • ok logo

Скачать The computational theory of Riemann–Hilbert problems (Lecture 4) by Thomas Trogdon бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно The computational theory of Riemann–Hilbert problems (Lecture 4) by Thomas Trogdon или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку The computational theory of Riemann–Hilbert problems (Lecture 4) by Thomas Trogdon бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео The computational theory of Riemann–Hilbert problems (Lecture 4) by Thomas Trogdon

Program : Integrable Systems in Mathematics, Condensed Matter and Statistical Physics

ORGANIZERS : Alexander Abanov, Rukmini Dey, Fabian Essler, Manas Kulkarni, Joel Moore, Vishal Vasan and Paul Wiegmann

DATE & TIME : 16 July 2018 to 10 August 2018

VENUE : Ramanujan Lecture Hall, ICTS Bangalore

This program aims to address various aspects of integrability and its role in the advancement of Mathematics, Mathematical Physics, Condensed Matter Physics and Statistical Mechanics. The scope of the proposed program is therefore highly interdisciplinary, being aimed at mathematicians and physicists who are working on different aspects of integrability. The purpose is to bring together experienced as well as young scientists, graduate students and postdoctoral fellows who are working on various aspect of quantum as well as classical systems in which integrability plays a paramount role.

Dates:
July 16 - July 27 (First Division: Integrable systems in Mathematics and Mathematical Physics)
July 30 - Aug 10 (Second Division: Integrable systems in Condensed Matter / Statistical Physics)

The above two divisions are only made just as a broad reference for gathering like-minded mathematicians and physicists. But, we aim to strongly encourage cross-disciplinary discussions throughout the 4 week program under the common theme of integrability.

During the first two weeks of the program, there is also a parallel meeting Quantum Fields, Geometry and Representation Theory and we expect fruitful interactions.

Topics to be discussed under the division of Mathematics and Mathematical Physics include (but not restricted to):

Constant Mean Curvature Surfaces (classical and discrete) and their Relation to Integrable Systems
Integrable systems and geometric asymptotics
Quantum Integrable Systems
Analytical methods for partial differential equations (PDEs) inspired by integrable systems
Applications of integrable PDEs in mathematical physics (for e.g, Benjamin-Ono, Nonlinear Schrodinger, Korteweg–de Vries equations)
Topics to be discussed under the division of Condensed Matter and Statistical Physics include (but not restricted to):

Nonequilibrium dynamics and transport: Integrability to many-body localization
Perturbed conformal and integrable field theories with applications to low dimensional strongly correlated systems
Bethe ansatz and applications to spin chains
Hydrodynamics and collective behavior of many body systems
Calogero, Lieb -Liniger, Yang-Gaudin models and their applications
There will also be some pedagogic lectures on the below topics:

Mathematics and Mathematical Physics:

A. Bobenko (TU Berlin) - “CMC Surfaces (classical and discrete) and their Relation to Integrable Systems”
David Smith (NUS, Yale) - “The Unified Transform Method for linear evolution equations”
Tom Trogdon (University of California-Irvine, USA) - “The computational theory of Riemann–Hilbert problems”
Paul Wiegmann (Chicago) - "Hofstadter problem: Integrability and Complexity"
Ritwik Mukherjee (NISER, Bubaneswar) - " Quantum Cohomology and WDVV equation"
Condensed Matter and Statistical Physics:

Fabian Essler (Oxford) - “Integrability out of equilibrium”
Joel Moore (Berkeley) - “Nonequilibrium dynamics and transport: Integrability to many-body localization”
Alexander Abanov (Simons Center, Stony Brook) - "Hydrodynamics, variational principles and integrability"
Alexios Polychornakos (CCNY-CUNY) - "Physics and Mathematics of Quantum and Classical Calogero models"
Fabio Franchini (University of Zagreb, Croatia) - "Basic Lectures on Bethe Ansatz"


CONTACT US : integrability2018 ictsresin

PROGRAM LINK :https://www.icts.res.in/program/integ...

Table of Contents (powered by https://videoken.com)
0:00:00 Integrable systems in Mathematics, Condensed Matter and Statistical Physics
0:00:10 The computational theory of Riemann-Hilbert problems (Lecture 4)
0:00:15 Computing Cauchy integrals
0:01:20 A controlled basis
0:03:00 Generalizing the contours
0:03:16 A definition and a singular integral equation
0:04:00 Sobolev spaces
0:08:51 Zero-sum space
0:11:37 Regularity of the jump matrix
0:15:23 Associated operators
0:16:33 Smoothness
0:17:29 Some notes on numerical solutions
0:20:09 The numerical solution of Riemann- Hilbert problems
0:20:47 The defocusing nonlinear Schrodinger equation
0:22:31 The initial value problem
0:26:36 An important calculation
0:34:00 Steepest descent
0:36:50 [Code Walkthrough]
0:45:36 A deformation
0:49:03 The KdV equation
0:49:52 The KdV equation with decaying data
0:52:53 Nonlinear superposition
0:54:54 With some solitons
0:56:13 Other work
0:57:33 Deformations

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]