Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering Pandas Looping Through Columns with Complex Value Maps

  • vlogize
  • 2025-04-15
  • 2
Mastering Pandas Looping Through Columns with Complex Value Maps
Pandas: Loop through many columns and apply different maps to the columns when performing value_counpythonpandasloops
  • ok logo

Скачать Mastering Pandas Looping Through Columns with Complex Value Maps бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering Pandas Looping Through Columns with Complex Value Maps или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering Pandas Looping Through Columns with Complex Value Maps бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering Pandas Looping Through Columns with Complex Value Maps

Learn how to efficiently loop through multiple DataFrame columns in `Pandas` and apply different value maps for frequency counts. Boost your data processing skills with this comprehensive guide!
---
This video is based on the question https://stackoverflow.com/q/68313358/ asked by the user 'ATLMan' ( https://stackoverflow.com/u/13218423/ ) and on the answer https://stackoverflow.com/a/68313486/ provided by the user 'jezrael' ( https://stackoverflow.com/u/2901002/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Pandas: Loop through many columns and apply different maps to the columns when performing value_counts

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering Pandas Looping Through Columns with Complex Value Maps

When working with survey data in Pandas, you may often find yourself grappling with a multitude of columns that each require unique mapping of values. This scenario becomes especially challenging when you have hundreds of columns, as is common with extensive survey datasets. In this guide, we'll explore how to efficiently loop through multiple columns in a Pandas DataFrame, apply distinct mapping for each, and calculate the frequency counts for the values.

The Problem: Value Mapping for Survey Data

Imagine you have survey data like this:

[[See Video to Reveal this Text or Code Snippet]]

Here, we have a few columns, Age and MH, with values that correspond to different meanings depending on the context. The challenge comes when you want to map these values and perform frequency counts for numerous columns with various mappings.

For example:

In the MH column, we might want to map:

0 = "No"

1 = "Yes"

2 = "Maybe"

In the Age column, we could be interested in mapping:

18 = "Very young"

19 = "Young"

20 = "Old"

21 = "Very old"

Setting Up the Mappings

To achieve this, you'll typically set up a lookup table to specify these mappings. Consider the following setup:

[[See Video to Reveal this Text or Code Snippet]]

In this situation, df_lkup acts as a guide for which columns use which mappings.

The Solution: Looping Through Columns and Applying Maps

The Initial Approach

Initially, you may have thought to loop through these mappings using code similar to:

[[See Video to Reveal this Text or Code Snippet]]

However, this code won't work as expected because the variable names need to be resolved to their corresponding dictionaries.

The Correct Method

To resolve this, you can utilize the globals() function to get the actual mappings dynamically:

[[See Video to Reveal this Text or Code Snippet]]

An Even Better Solution: Using a Dictionary Directly

Instead of using a lookup DataFrame, you can streamline the process by defining your mappings directly as a dictionary:

[[See Video to Reveal this Text or Code Snippet]]

This approach eliminates the complexity of navigating through a separate lookup table and allows for cleaner, faster code.

Conclusion

Looping through multiple columns in a Pandas DataFrame with varying value maps can initially seem daunting, especially with large datasets. However, mastering the use of mappings and efficient loops can greatly enhance your ability to analyze survey data effectively. By applying the techniques outlined in this post, you'll streamline your data processing tasks and become a more proficient user of Pandas.

Feel free to experiment with your own mappings and adjust the above examples to fit your specific use case! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]