Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Merging Two PySpark DataFrames: Handling List Columns Efficiently

  • vlogize
  • 2025-03-31
  • 1
Merging Two PySpark DataFrames: Handling List Columns Efficiently
merge two pyspark dataframe based on one column containing list and other as valuespythonpandasdataframepyspark
  • ok logo

Скачать Merging Two PySpark DataFrames: Handling List Columns Efficiently бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Merging Two PySpark DataFrames: Handling List Columns Efficiently или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Merging Two PySpark DataFrames: Handling List Columns Efficiently бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Merging Two PySpark DataFrames: Handling List Columns Efficiently

Learn how to merge two PySpark DataFrames based on a column containing lists and other as values without using loops. Get an efficient solution with clean code to handle large datasets!
---
This video is based on the question https://stackoverflow.com/q/70350573/ asked by the user 'Dileep Kumar' ( https://stackoverflow.com/u/11836214/ ) and on the answer https://stackoverflow.com/a/70350906/ provided by the user 'Steven' ( https://stackoverflow.com/u/5013752/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: merge two pyspark dataframe based on one column containing list and other as values

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Merging Two PySpark DataFrames: Handling List Columns Efficiently

When working with data in PySpark, you may often encounter situations where you need to merge two DataFrames based on complex relationships, such as one DataFrame containing lists in a column while the other contains corresponding scalar values. This can seem tricky at first, but there's an efficient way to achieve this without resorting to looping through rows, which can be inefficient for large datasets. In this post, we'll break down a solution to merge two DataFrames based on a column with list values.

The Problem

Consider two DataFrames:

Sales DataFrame (df11):

[[See Video to Reveal this Text or Code Snippet]]

UPC DataFrame (df22):

[[See Video to Reveal this Text or Code Snippet]]

Your goal is to produce a new DataFrame that merges these two based on the store names, computing the total sales for each UPC:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

Step 1: Prepare Your DataFrames

First, make sure the definition of your DataFrames correctly represents the data types. For the lists in df22, we'll use ArrayType. Here's how to define your DataFrames in PySpark:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Explode and Join

Next, explode the store column in df22 to create individual rows for each store in the list. This allows you to perform a join operation with df11:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Aggregate the Results

Finally, group by the UPC and aggregate the results to recreate the store list and sum the sales:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Show the Result

Now, it’s time to see the result of your operation. Here’s how to display the final DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Your output will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using the exploding and joining method in PySpark enables you to effectively merge DataFrames that contain lists without the inefficiencies of looping through rows. This approach is particularly useful when handling large datasets, allowing for a scalable solution.

By following these steps, you can efficiently merge your DataFrames while maintaining clarity in your code. Whether you are working on analytics, data science, or machine learning projects, understanding how to manage DataFrames with list columns will significantly enhance your data processing capabilities in PySpark.

Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]