Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть DeepFLASH: An Efficient Network for Learning-Based Medical Image Registration

  • ComputerVisionFoundation Videos
  • 2020-07-16
  • 636
DeepFLASH: An Efficient Network for Learning-Based Medical Image Registration
  • ok logo

Скачать DeepFLASH: An Efficient Network for Learning-Based Medical Image Registration бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно DeepFLASH: An Efficient Network for Learning-Based Medical Image Registration или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку DeepFLASH: An Efficient Network for Learning-Based Medical Image Registration бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео DeepFLASH: An Efficient Network for Learning-Based Medical Image Registration

Authors: Jian Wang, Miaomiao Zhang Description: This paper presents DeepFLASH, a novel network with efficient training and inference for learning-based medical image registration. In contrast to existing approaches that learn spatial transformations from training data in the high dimensional imaging space, we develop a new registration network entirely in a low dimensional bandlimited space. This dramatically reduces the computational cost and memory footprint of an expensive training and inference. To achieve this goal, we first introduce complex-valued operations and representations of neural architectures that provide key components for learning-based registration models. We then construct an explicit loss function of transformation fields fully characterized in a bandlimited space with much fewer parameterizations. Experimental results show that our method is significantly faster than the state-of-the-art deep learning based image registration methods, while producing equally accurate alignment. We demonstrate our algorithm in two different applications of image registration: 2D synthetic data and 3D real brain magnetic resonance (MR) images.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]