Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Ranking Based on Collaborative Feature Weighting Applied to the Recommendation of Research Papers

  • Ijaia Journal
  • 2018-04-27
  • 58
Ranking Based on Collaborative Feature Weighting Applied to the Recommendation of Research Papers
AI AlgorithmsArtificial Intelligence tools & Applications
  • ok logo

Скачать Ranking Based on Collaborative Feature Weighting Applied to the Recommendation of Research Papers бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Ranking Based on Collaborative Feature Weighting Applied to the Recommendation of Research Papers или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Ranking Based on Collaborative Feature Weighting Applied to the Recommendation of Research Papers бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Ranking Based on Collaborative Feature Weighting Applied to the Recommendation of Research Papers

Current research on recommendation systems focuses on optimization and evaluation of the quality of ranked recommended results. One of the most common approaches used in digital paper libraries to present and recommend relevant search results, is ranking the papers based on their features. However, feature utility or relevance varies greatly from highly relevant to less relevant,and redundant. Departing from the existing recommendation systems, in which all item features are considered to be equally important, this study presents the initial development of an approach to feature weighting with the goal of obtaining a novel recommendation method in which features which are more effective have a higher contribution/weight to the ranking process. Furthermore,it focuses on obtaining ranking of results returned by a query through a collaborative weighting procedure carried out by human users. The collaborative feature-weighting procedure is shown to be incremental, which in turn leads to an incremental approach to feature-based similarity evaluation.The obtained system is then evaluated using Normalized Discounted Cumulative Gain (NDCG) with respect to a crowd-sourced ranked results. Comparison between the performance of the proposed and Ranking SVM methods shows that the overall ranking accuracy of the proposed
approach outperforms the ranking accuracy of Ranking SVM method.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]