Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть data warehousing architecture in tamil/rj praveen/tamil

  • praveen kumar
  • 2019-02-02
  • 19468
data warehousing architecture in tamil/rj praveen/tamil
data warehousingdata warehouse architecturedata warehousedata warehouse conceptsdata warehouse tutorialdata warehousing tutorialdata warehousing conceptsdata mining in tamildata warehouse architecturesdata warehousing architecturedata warehouse learn it in tamildata warehouse concepts in tamilwhat is data warehouse in tamildata miningdata mart vs data warehousesnowflake schema in data warehousingarchitecture of data warehouse
  • ok logo

Скачать data warehousing architecture in tamil/rj praveen/tamil бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно data warehousing architecture in tamil/rj praveen/tamil или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку data warehousing architecture in tamil/rj praveen/tamil бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео data warehousing architecture in tamil/rj praveen/tamil

Data warehousing architecture refers to the structure and design of a data warehouse, which is a centralized repository of data that is specifically structured for efficient querying and analysis. The architecture of a data warehouse plays a crucial role in organizing and managing data for business intelligence and decision-making purposes. There are several components and layers in a typical data warehousing architecture:


Data Sources:


Operational Databases: These are the primary sources of data, such as transactional databases, customer relationship management (CRM) systems, and other data systems that store operational data.
ETL (Extract, Transform, Load):


Extraction: Data is extracted from various source systems. This involves reading data from source databases, files, or APIs.
Transformation: Data is cleansed, enriched, and transformed into a common format suitable for analysis. This often includes data validation, data type conversion, and handling missing or inconsistent data.
Loading: Transformed data is loaded into the data warehouse. There are typically two methods for loading data: batch processing and real-time streaming.
Data Warehouse:


Data Storage: This layer stores the transformed and structured data in a format optimized for querying and reporting. Data is typically stored in fact tables (containing measurable business data) and dimension tables (containing descriptive information for analysis).
Data Schema: Data in the warehouse is organized using a schema, such as star schema or snowflake schema, to optimize query performance.
Metadata Repository:


Metadata, or data about data, is stored in a metadata repository. It contains information about the structure, source, transformations, and relationships of data within the data warehouse. Metadata is essential for data lineage, governance, and data cataloging.
Query and Reporting Tools:


Business Intelligence (BI) tools and reporting tools connect to the data warehouse to run queries, generate reports, and create dashboards for data analysis and visualization.
Data Access Layer:


This layer provides an interface for users and applications to interact with the data warehouse. It may include SQL interfaces, web-based dashboards, and APIs for programmatic access.
Security and Access Control:


Data warehousing architecture includes security mechanisms to ensure data privacy and compliance with regulations. Access controls, encryption, and authentication mechanisms are implemented to protect data.
Scalability and Performance Optimization:


Data warehousing architectures are designed to scale horizontally or vertically to handle increasing data volumes and query complexity. Performance tuning is a critical aspect of data warehousing to ensure efficient query processing.
Backup and Recovery:


Robust backup and recovery mechanisms are in place to safeguard data against loss or corruption.
Data Governance and Quality:


Data governance policies and procedures are established to maintain data quality, consistency, and accuracy within the data warehouse.
There are various data warehousing solutions available, both on-premises and in the cloud, with different architectures and features. Popular data warehousing platforms include Amazon Redshift, Google BigQuery, Microsoft Azure Synapse Analytics (formerly SQL Data Warehouse), and Snowflake, each with its own architecture and capabilities tailored to specific business needs.
#datawarehouse #datawarehousing

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]