Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding Python multiprocessing with Class Instances

  • vlogize
  • 2025-10-08
  • 0
Understanding Python multiprocessing with Class Instances
Python multiprocess with class instancepythonpython multiprocessing
  • ok logo

Скачать Understanding Python multiprocessing with Class Instances бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding Python multiprocessing with Class Instances или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding Python multiprocessing with Class Instances бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding Python multiprocessing with Class Instances

Learn how Python `multiprocessing` works with class instances and why modifications in parallel processes do not affect each other.
---
This video is based on the question https://stackoverflow.com/q/64610930/ asked by the user 'mmonti' ( https://stackoverflow.com/u/7631505/ ) and on the answer https://stackoverflow.com/a/64611751/ provided by the user 'wwii' ( https://stackoverflow.com/u/2823755/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python multiprocess with class instance

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding Python multiprocessing with Class Instances

When you're diving into Python's multiprocessing module, you might come across interesting questions about how class instances behave across different processes. A common query revolves around how class attributes can be modified in parallel processes without interfering with one another. Don't worry if this concept seems confusing; let’s break it down and clarify how it works.

The Class and Method Setup

To illustrate the concept, let's start with the following class definition:

[[See Video to Reveal this Text or Code Snippet]]

In this example, we have a class Foo that initializes an attribute a and has a method Sum which takes an input b, modifies a, and returns the sum along with the new value of a. Here’s how we create an instance of this class:

[[See Video to Reveal this Text or Code Snippet]]

The Parallel Calculation

Next, you might want to use this class instance to perform calculations in parallel. Here’s how this could be implemented:

[[See Video to Reveal this Text or Code Snippet]]

This code spawns multiple processes to invoke foo.Sum(b), passing different values of b concurrently. However, this raises an interesting question: how can the different processes modify the class attribute a at the same time without interfering with each other?

Why This Works: The Isolation of Processes

The key to understanding this lies in how Python manages memory in a multiprocessing context. Each launched process in Python is independent and has its own separate memory space. Here’s a summary of the implications:

Isolation of Instances: When you pass the object foo to different processes, each process gets its own copy of that object. Consequently, modifications made to the attribute a in one process do not affect the same attribute in another process.

No Shared State: Since each process runs in its own space, they do not share the same state. This means they can run their operations on the class instance without contention or race conditions.

To better illustrate this, consider modifying the class to print the ID of each instance along with the value of a:

[[See Video to Reveal this Text or Code Snippet]]

Example Output and Explanation

When you run the modified code, you will see different IDs and values for a being printed, demonstrating that the processes are indeed working with separate instances of foo. For instance:

[[See Video to Reveal this Text or Code Snippet]]

What this shows is that even though the foo object is the same in terms of the code, each process operates on its own instance due to the isolation provided by multiprocessing. For example, while one process might assign a new random value to a, it doesn't alter the a in another process.

Conclusion

Understanding how multiprocessing works with class instances can be a fundamental concept for effective coding in Python. The independence of processes ensures that you can work simultaneously without the fear of unexpected interference between operations. This is particularly useful when handling time-consuming tasks in parallel.

So, don’t hesitate to leverage these capabilities of Python's multiprocessing for your applications—just remember that each process has its own memory space and state!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]