Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Aggregating DataFrame Rows in Pandas: Grouping by Multiple Columns Made Easy

  • vlogize
  • 2025-04-09
  • 0
Aggregating DataFrame Rows in Pandas: Grouping by Multiple Columns Made Easy
Aggregating dataframe rows using groupby combining multiple columnspythongroup by
  • ok logo

Скачать Aggregating DataFrame Rows in Pandas: Grouping by Multiple Columns Made Easy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Aggregating DataFrame Rows in Pandas: Grouping by Multiple Columns Made Easy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Aggregating DataFrame Rows in Pandas: Grouping by Multiple Columns Made Easy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Aggregating DataFrame Rows in Pandas: Grouping by Multiple Columns Made Easy

Learn how to efficiently aggregate DataFrame rows in Pandas by combining multiple columns using `groupby()`. Discover step-by-step solutions to simplify your data analysis.
---
This video is based on the question https://stackoverflow.com/q/75601308/ asked by the user 'MaartenB' ( https://stackoverflow.com/u/6610407/ ) and on the answer https://stackoverflow.com/a/75616900/ provided by the user 'Timus' ( https://stackoverflow.com/u/14311263/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Aggregating dataframe rows using groupby, combining multiple columns

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Aggregating DataFrame Rows in Pandas: Grouping by Multiple Columns Made Easy

Data analysis in Python often requires organizing data into meaningful summaries. One common task is to combine or aggregate rows based on specific criteria. If you're working with a Pandas DataFrame and need to aggregate rows while combining different column values, then you're in the right place! Let's dive into a practical example where we aim to combine data efficiently using the groupby() method in Pandas.

The Problem at Hand

Assume you have a DataFrame containing time duration records for different projects across varying days. You need to perform two main tasks:

Sum the total duration for each project on each date.

Combine the descriptions of activities per project, indicating how long each activity took.

Here’s a sample DataFrame to illustrate this:

[[See Video to Reveal this Text or Code Snippet]]

The DataFrame looks like this:

datedurationprojectdescription02023-02-270 days 00:30:00project Aplanning12023-02-270 days 01:00:00project Aplanning22023-02-270 days 01:30:00project Aexecution32023-02-270 days 00:15:00project Bplanning42023-02-280 days 03:00:00project Awrapup52023-02-280 days 03:00:00project Bexecution62023-02-280 days 02:00:00project BmiscellaneousThe Solution

You can achieve the desired outputs without needing complex custom functions or loops! Here’s how you can do it in one go:

Step 1: Aggregate Duration and Description

Use the following code snippet to group the data and aggregate duration and description:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code:

First Grouping: We group the DataFrame by the date, project, and description columns, summing up the duration values.

Augment Description: Then, we modify the description column to include the cumulative durations. This is done using a lambda function that extracts the total seconds and converts them into hours.

Final Aggregation: Finally, we group once more by date and project. Here we sum the duration and join the updated description strings.

Result

The aggregated DataFrame will look like this:

dateprojectdurationdescription02023-02-27project A0 days 03:00:00execution (1.5), planning (1.5)12023-02-27project B0 days 00:15:00planning (0.25)22023-02-28project A0 days 03:00:00wrapup (3.0)32023-02-28project B0 days 05:00:00execution (3.0), miscellaneous (2.0)Alternative Approach

If you prefer a pivot table format without combining descriptions, you can use the pivot_table() method:

[[See Video to Reveal this Text or Code Snippet]]

This will create a cleaner summary view of the data, showing the total duration across different descriptions as individual columns.

Conclusion

Aggregating DataFrame rows in Pandas using groupby() can simplify your data analysis tasks, allowing for efficient grouping and summing of values. Whether you need a combined description or a separate column for each description, Pandas provides you with powerful tools to achieve the desired results. With these techniques, you're well-equipped to tackle similar data aggregation challenges in your projects.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]