Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть ADIW02 | Dr. Kyle Wedgwood | Bump attractors and waves in networks of leaky integrate-and-fire...

  • INI Seminar Room 1
  • 2024-04-18
  • 238
ADIW02 | Dr. Kyle Wedgwood | Bump attractors and waves in networks of leaky integrate-and-fire...
INIIsaac Newton InstituteIsaac Newton Institute for Mathematical SciencesIsaac NewtonMathematical SciencesMathematicalMathsSciencesInternationalSeminarsTalksPublic TalksPublicLecturesPublic LecturesResearch InstituteResearchUniversity of CambridgeCambridgeUniveristyEducationApplied MathematicsStatisticsComputer SciencePhysicsEngineeringEconomicsBiologyChemistryHumanitiesArchivePublic SpeakingProgrammesWorkshopsUnited KingdomUKLivestream
  • ok logo

Скачать ADIW02 | Dr. Kyle Wedgwood | Bump attractors and waves in networks of leaky integrate-and-fire... бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно ADIW02 | Dr. Kyle Wedgwood | Bump attractors and waves in networks of leaky integrate-and-fire... или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку ADIW02 | Dr. Kyle Wedgwood | Bump attractors and waves in networks of leaky integrate-and-fire... бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео ADIW02 | Dr. Kyle Wedgwood | Bump attractors and waves in networks of leaky integrate-and-fire...

Speaker: Dr Kyle Wedgwood (University of Exeter)

Date: 26th Mar 2024 - 9:00 to 9:50
Venue: INI Seminar Room 1
Title: Bump attractors and waves in networks of leaky integrate-and-fire neurons
Event: (ADIW02) Mathematical and Computational Modelling of Anti-Diffusive Phenomena

Abstract:

Coauthors: Daniele Avitabile (VU Amsterdam), Joshua L. Davis (DSTL)

Bump attractors are wandering localised patterns observed in in vivo experiments of spatially-extended neurobiological networks. They are important for the brain's navigational system and speci c memory tasks. A bump attractor is characterised by a core in which neurons  re frequently, while those away from the core do not  re. These structures have been found in simulations of spiking neural networks, but we do not yet have a mathematical understanding of their existence, because a rigorous analysis of the nonsmooth networks that support them is challenging. We uncover a relationship between bump attractors and travelling waves in a classical network of excitable, leaky integrate-and- re neurons. This relationship bears strong similarities to the one between complex spatiotemporal patterns and waves at the onset of pipe turbulence. Waves in the spiking network are determined by a  ring set, that is, the collection of times at which neurons reach a threshold and  re as the wave propagates. We de ne and study analytical properties of the voltage mapping, an operator transforming a solution's ring set into its spatiotemporal pro le. This operator allows us to construct localised travelling waves with an arbitrary number of spikes at the core, and to study their linear stability. A homogeneous \laminar" state exists in the network, and it is linearly stable for all values of the principal control parameter. Su ciently wide disturbances to the homogeneous state elicit the bump attractor. We show that one can construct waves with a seemingly arbitrary number of spikes at the core; the higher the number of spikes, the slower the wave, and the more its pro le resembles a stationary bump. As in the uid-dynamical analogy, such waves coexist with the homogeneous state, are unstable, and the solution branches to which they belong are disconnected from the laminar state; we provide evidence that the dynamics of the bump attractor displays echoes of the unstable waves, which form its building blocks.

-------------------

FOLLOW US
🌐| Website: https://www.newton.ac.uk
🎥| Main Channel:    / @isaacnewtoninstitute  
🐦| Twitter:   / newtoninstitute  
💬| Facebook:   / newton.institute  
📷| Instagram:   / isaacnewtoninstitute  
🔗| LinkedIn:   / isaac-newton-institute-for-mathematical-sc...  

SEMINAR ROOMS
🥇| INI Seminar Room 1:    / @iniseminarroom1  
🥈| INI Seminar Room 2:    / @iniseminarroom2  
🛰️| INI Satellite Events:    / @inisatellite  

ABOUT
The Isaac Newton Institute is a national and international visitor research institute. It runs research programmes on selected themes in mathematics and the mathematical sciences with applications over a wide range of science and technology. It attracts leading mathematical scientists from the UK and overseas to interact in research over an extended period.

👉 Learn more about us and our events here: https://www.newton.ac.uk

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]