Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Randomly Delete Rows from a NumPy Array in Python

  • vlogize
  • 2025-05-27
  • 0
How to Randomly Delete Rows from a NumPy Array in Python
Deleting random rows from np arraypythonarraysnumpyrandom
  • ok logo

Скачать How to Randomly Delete Rows from a NumPy Array in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Randomly Delete Rows from a NumPy Array in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Randomly Delete Rows from a NumPy Array in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Randomly Delete Rows from a NumPy Array in Python

Discover how to randomly delete a portion of rows from a NumPy array to use for validation in your machine learning projects. Learn the common pitfalls and their fixes!
---
This video is based on the question https://stackoverflow.com/q/66457715/ asked by the user 'Whitehot' ( https://stackoverflow.com/u/3575623/ ) and on the answer https://stackoverflow.com/a/66458818/ provided by the user 'Ehsan Rajabi' ( https://stackoverflow.com/u/11983368/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Deleting random rows from np array

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Deleting Random Rows from a NumPy Array: A Complete Guide

When working with machine learning, it's crucial to split your dataset into training and validation sets properly. One common approach is to take a random sample of rows from your dataset. However, if you're using NumPy and run into issues where the shapes of your arrays don’t match or unexpected results occur, don’t worry. In this guide, we'll explore how to effectively delete random rows from a NumPy array while ensuring your data remains consistent.

The Problem

You’re attempting to randomly select 20% of your data from a NumPy array for validation purposes. Here’s a snippet of your current implementation:

[[See Video to Reveal this Text or Code Snippet]]

Despite your efforts, you notice that the new x_train doesn't maintain the correct length, leading to some confusion. Running the code multiple times reveals that while x_test always has 218 rows, the updated x_train seems to vary in size.

What's Going Wrong?

The underlying issue is that np.delete() alters the original array by removing elements at specified indices, but if those indices are manipulated (like in random selection), it can lead to unintended results because indices may become invalid after deletions. This can ultimately produce misleading shapes and sizes of your arrays.

The Solution

To avoid the issues posed by randomly selecting duplicate indices and the complexities introduced by np.delete(), we'll use a more reliable method for selecting rows without replacement. Here’s how you can do it:

Step-by-Step Guide

Use numpy.random.choice(): Instead of generating random integers that may repeat, use np.random.choice() which allows you to specify replace=False to ensure all selected indices are unique.

Implementation:

[[See Video to Reveal this Text or Code Snippet]]

Key Advantages of This Approach

Unique Indices: By using np.random.choice() with replace=False, you ensure that each selected index is unique, preventing accidental duplicate selections.

Defined Data Integrity: The output shapes of your arrays will remain consistent with expectations, preserving the integrity of your training and validation sets.

Final Thoughts

Randomly splitting your dataset is a common task in machine learning, and ensuring you do this correctly is vital for effective model validation. By adopting the method we discussed, you can confidently extract a validation set without encountering size discrepancies. Embrace these practices, and you’ll enhance the robustness of your data handling.

Keep experimenting with different datasets, and happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]