Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть ICML22 Machine Learning for Cyber Security Workshop - Hammar & Stadler

  • Kim Hammar
  • 2022-07-17
  • 105
ICML22 Machine Learning for Cyber Security Workshop - Hammar & Stadler
  • ok logo

Скачать ICML22 Machine Learning for Cyber Security Workshop - Hammar & Stadler бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно ICML22 Machine Learning for Cyber Security Workshop - Hammar & Stadler или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку ICML22 Machine Learning for Cyber Security Workshop - Hammar & Stadler бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео ICML22 Machine Learning for Cyber Security Workshop - Hammar & Stadler

Pre-recorded presentation of our paper "Learning Security Strategies through Game Play and Optimal Stopping at ICML 22 in Baltimore.

Preprint: https://arxiv.org/abs/2205.14694

Workshop website: https://sites.google.com/view/icml-ml...

Paper abstract:

We study automated intrusion prevention using reinforcement learning. Following a novel approach, we formulate the interaction between an attacker and a defender as an optimal stopping game and let attack and defense strategies evolve through reinforcement learning and self-play. The game-theoretic perspective allows us to find defender strategies that are effective against dynamic attackers. The optimal stopping formulation gives us insight into the structure of optimal strategies, which we show to have threshold properties. To obtain the optimal defender strategies, we introduce T-FP, a fictitious self-play algorithm that learns Nash equilibria through stochastic approximation. We show that T-FP outperforms a state-of-the-art algorithm for our use case. Our overall method for learning and evaluating strategies includes two systems: a simulation system where defender strategies are incrementally learned and an emulation system where statistics are produced that drive simulation runs and where learned strategies are evaluated. We conclude that this approach can produce effective defender strategies for a practical IT infrastructure.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]