Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding the Moral of the Story from SICP Ex. 1.20: Tracing Euclid's Algorithm

  • vlogize
  • 2025-09-18
  • 2
Understanding the Moral of the Story from SICP Ex. 1.20: Tracing Euclid's Algorithm
  • ok logo

Скачать Understanding the Moral of the Story from SICP Ex. 1.20: Tracing Euclid's Algorithm бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding the Moral of the Story from SICP Ex. 1.20: Tracing Euclid's Algorithm или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding the Moral of the Story from SICP Ex. 1.20: Tracing Euclid's Algorithm бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding the Moral of the Story from SICP Ex. 1.20: Tracing Euclid's Algorithm

Explore the key insights of SICP Ex. 1.20 on tracing Euclid's algorithm, focusing on the differences between normal and applicative order evaluation. Understand the impact of redundant computation and lazy evaluation in programming.
---
This video is based on the question https://stackoverflow.com/q/62192832/ asked by the user 'mwal' ( https://stackoverflow.com/u/4204133/ ) and on the answer https://stackoverflow.com/a/62322932/ provided by the user 'codybartfast' ( https://stackoverflow.com/u/53252/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Moral of the story from SICP Ex. 1.20?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Moral of the Story from SICP Ex. 1.20: Tracing Euclid's Algorithm

In the world of computer science, understanding the performance of algorithms is vital. One fascinating exercise from the "Structure and Interpretation of Computer Programs" (SICP) explores Euclid's algorithm for computing the greatest common divisor (GCD) and delves into the differences between normal order and applicative order evaluation. This exercise not only enhances our understanding of algorithm efficiency but also illustrates the implications of delayed evaluation.

The Problem: Tracing Euclid's Algorithm

The challenge starts with the implementation of Euclid's algorithm, which can be defined succinctly in Lisp as follows:

[[See Video to Reveal this Text or Code Snippet]]

Here’s what we need to consider:

The function gcd is recursive.

The argument b is used multiple times within the function body.

This brings us to investigate the number of calls made when using different evaluation orders—specifically, normal order and applicative order.

The Concept of Evaluation Orders

Normal Order Evaluation

In normal order evaluation, function arguments are not evaluated until their values are needed. As a result, the same computation might be repeated multiple times if an argument is used several times, like in gcd. In our example, this results in 18 calls to the remainder function when gcd is evaluated this way.

Applicative Order Evaluation

Conversely, with applicative order evaluation, all arguments are evaluated before entering the function. This approach leads to fewer redundant computations—only 4 calls to remainder occur during the evaluation.

Redundant Computation

The key takeaway here is the contrast between these two evaluation strategies. When the same argument is re-used—which happens frequently in recursive functions—normal order can lead to inefficient performance due to redundant computations.

Exploring Delayed Evaluation

While delayed evaluation can be advantageous, such as when handling infinite structures like streams, it could also lead to inefficiencies as demonstrated in our GCD example. Here are some concepts to address these inefficiencies:

Caching Results: Store computed values to prevent recomputation, which can improve performance.

Selective Evaluation: Use strategies like delay and force in specific scenarios where repeated computations might occur.

Future Insights in SICP

As we progress through SICP, particularly in Chapter 4, we will revisit these concepts in greater depth. The discussion broadens to include variations in parameter evaluation behaviors, such as:

Applicative Order: Regular evaluation of function parameters.

Normal Order (Lazy): Evaluated only when necessary.

Memoization: Caching the result for parameters evaluated once.

The authors emphasize that while applicative order may feel intuitive, normal order plays an essential role when carefully utilized, especially in contexts like infinite data structures or certain recursive functions.

Conclusion

In conclusion, the moral of SICP Ex. 1.20 reveals not only the intricacies of different evaluation strategies but also the practical implications they have on algorithm performance. Learning to navigate the trade-offs between normal and applicative orders can enhance our programming skills and allow us to write more efficient algorithms.

By understanding these evaluation strategies at this stage, you will be prepared for more complex concepts that unfold later in the book, reaffirming the importance of knowing when to apply these 'levers' effectively.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]