Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transforming XML into a JSON Loadable Structure for BigQuery

  • vlogize
  • 2025-10-08
  • 0
Transforming XML into a JSON Loadable Structure for BigQuery
Transforming XML into JSON loadable structure for BigQuerypythonjsonxmlgoogle bigquery
  • ok logo

Скачать Transforming XML into a JSON Loadable Structure for BigQuery бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transforming XML into a JSON Loadable Structure for BigQuery или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transforming XML into a JSON Loadable Structure for BigQuery бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transforming XML into a JSON Loadable Structure for BigQuery

Learn how to convert XML data into a JSON format suitable for loading into Google BigQuery using Python. Optimize your Python script for better performance and clarity.
---
This video is based on the question https://stackoverflow.com/q/64640158/ asked by the user 'BSpinoza' ( https://stackoverflow.com/u/11690621/ ) and on the answer https://stackoverflow.com/a/64645738/ provided by the user 'trigonom' ( https://stackoverflow.com/u/12829545/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Transforming XML into JSON loadable structure for BigQuery

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Transforming XML into a JSON Loadable Structure for BigQuery

As data increasingly flows through various platforms, converting data formats efficiently is a crucial skill. One common scenario involves transforming XML data into a structured JSON format for loading into Google BigQuery. If you’re embarking on this journey, you might have encountered the challenge of handling repetitive groups in XML. In this guide, we’ll explore how to tackle this problem using Python.

The Problem at Hand

Suppose you call an API that returns an XML response. You need to extract this data, convert it into a JSON structure that adheres to a specific schema, and subsequently load it into BigQuery. The structure you aim for is:

ResponseKey

ResponseID

Response

ResponseText

ResponseType

ResponseStatus

You already have a working solution that utilizes ElementTree to parse the XML, but you're unsure if your approach is the most effective. Let's walk through an improved solution step by step.

The Solution

Step 1: Parse the XML

Python's xml.etree.ElementTree is a powerful module for parsing XML documents. Begin by reading and parsing the XML file:

[[See Video to Reveal this Text or Code Snippet]]

Here, we initialize the XML parser and retrieve the root of the XML tree, which serves as the starting point for our data extraction.

Step 2: Create a JSON Structure

We will create a dictionary that will hold our JSON formatted data. Start by initializing this dictionary:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Extract Data from XML

Iterate through the XML structure to extract the required data. Since you're dealing with multiple Response elements, you’ll want to append each response to the response_list.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Write JSON to a File

After constructing the complete structure, we write it to a JSON file:

[[See Video to Reveal this Text or Code Snippet]]

Benefits of This Approach

Simplicity: The above method directly maps XML elements to a JSON structure, reducing the amount of code and maintaining readability.

Clarity: Each step is clearly defined—parsing data, constructing the JSON object, and writing the output, making it easier to follow and debug.

Efficiency: By using a dictionary to build the JSON object, we avoid unnecessary loops and operations that could slow down the process.

Conclusion

Transforming XML into a loadable JSON structure for BigQuery can be streamlined effectively with Python’s built-in libraries. The approach outlined above not only simplifies the transformation process but also ensures you're prepared for efficient data loading. By maintaining clear and organized code, you enhance maintainability and make it easier to handle future modifications.

This structured method can improve your data processing workflow significantly, allowing you to focus on extracting insights rather than wrestling with data formats.

If you have any questions or alternate methods to share, feel free to leave a comment below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]