Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Inspecting CalibratedClassifierCV BaseEstimator Parameters

  • vlogize
  • 2025-08-19
  • 1
Inspecting CalibratedClassifierCV BaseEstimator Parameters
How to inspect CalibratedClassifierCV BaseEstimator parameterspythonscikit learnpipelinerandom forest
  • ok logo

Скачать Inspecting CalibratedClassifierCV BaseEstimator Parameters бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Inspecting CalibratedClassifierCV BaseEstimator Parameters или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Inspecting CalibratedClassifierCV BaseEstimator Parameters бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Inspecting CalibratedClassifierCV BaseEstimator Parameters

Discover how to access and analyze the feature importance of a `RandomForestClassifier` wrapped in a `CalibratedClassifierCV` using scikit-learn. This guide provides step-by-step solutions and contextual explanations for effective model comparison.
---
This video is based on the question https://stackoverflow.com/q/64964820/ asked by the user 'StefanK' ( https://stackoverflow.com/u/5065219/ ) and on the answer https://stackoverflow.com/a/64966838/ provided by the user 'Venkatachalam' ( https://stackoverflow.com/u/6347629/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to inspect CalibratedClassifierCV BaseEstimator parameters

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Enigma of CalibratedClassifierCV

When working with machine learning (ML) models, particularly those involving pipelines and wrappers, accessing certain parameters can become challenging. For instance, if you’ve ever used a RandomForestClassifier wrapped in CalibratedClassifierCV, you may have found it difficult to inspect the underlying RandomForestClassifier and its feature importances. In this post, we will explore this scenario and provide concrete steps to extract valuable insights from your model.

The Problem: Accessing BaseEstimator Parameters

Imagine you have two trained ML models that you need to compare, but they are wrapped in complex structures:

Model 1: Trained on 2018 data.

Model 2: Trained on 2019 data.

Both are constructed using a pipeline that includes a CalibratedClassifierCV with a RandomForestClassifier serving as the base estimator. The challenge arises when you want to access the feature importance of the RandomForestClassifier—it feels like a black box.

For example, one of the common errors you might encounter when trying to access the parameters directly is:

[[See Video to Reveal this Text or Code Snippet]]

This error indicates that the way you’re attempting to access the base estimator is incorrect.

The Solution: Accessing Feature Importance

Below, we break down the process of inspecting the base estimator and accessing its parameters in an organized manner:

Step 1: Access the Pipeline

First, ensure you have your pipeline loaded. Depending on how you trained your models, you will likely have it saved as a .pkl file. Make sure to read this model from disk into your environment.

Step 2: Accessing the Base Estimator

To extract the feature importance from the RandomForestClassifier, you will use the following line of code:

[[See Video to Reveal this Text or Code Snippet]]

Here’s a full example for clarity:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Comparison of Calibrated Classifiers

For a thorough analysis, you may also want to compare the outputs of the calibrated classifiers. The calibrated_classifiers_ attribute can be accessed as follows:

[[See Video to Reveal this Text or Code Snippet]]

By doing this, you can gather insights into the calibration parameters a and b, which play a critical role in the sigmoid method of calibration.

Updates and Additional Information

It’s important to be aware that different calibration methods may provide different insights and parameters. The default method, which is sigmoid, has additional parameters fitted during the model training, giving further depth to your model understanding.

Conclusion

Traversing the complexities of CalibratedClassifierCV can be daunting, especially when accessing your RandomForestClassifier's parameters. By following the steps provided in this guide, you can effectively break down the black box and extract meaningful features and insights for comparison. Armed with this knowledge, you can inspect and compare your models much more effectively!

Thanks for reading! If you have any questions or comments about inspecting ML models, feel free to reach out.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]