Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Counting Occurrences in a DataFrame Across Columns with Python Pandas

  • vlogize
  • 2025-08-12
  • 1
Counting Occurrences in a DataFrame Across Columns with Python Pandas
Count occurrences in DataFrame across columnspythonpandasdataframe
  • ok logo

Скачать Counting Occurrences in a DataFrame Across Columns with Python Pandas бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Counting Occurrences in a DataFrame Across Columns with Python Pandas или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Counting Occurrences in a DataFrame Across Columns with Python Pandas бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Counting Occurrences in a DataFrame Across Columns with Python Pandas

Discover how to efficiently count the number of occurrences of items in a Python Pandas DataFrame across multiple columns. Learn two powerful methods to achieve this!
---
This video is based on the question https://stackoverflow.com/q/65170618/ asked by the user 'Oeyvind' ( https://stackoverflow.com/u/5231224/ ) and on the answer https://stackoverflow.com/a/65170756/ provided by the user 'busybear' ( https://stackoverflow.com/u/6942527/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Count occurrences in DataFrame across columns

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Counting Occurrences in a DataFrame Across Columns with Python Pandas

In the realm of data analysis, it is often necessary to count occurrences of distinct items in a dataset. If you're working with Python's Pandas library, this task becomes quite manageable. Today, we'll tackle a common question: How can one count the occurrences of items across multiple columns in a DataFrame? Let's look at a practical example and break down the solutions step by step.

The Problem

Consider the following DataFrame that represents actors in different roles:

[[See Video to Reveal this Text or Code Snippet]]

We want to know how many times each actor appears across the DataFrame. For example, we would like to find out that Bob appears twice while Alice, Frank, Sam, and Tom each appear once.

Solution Overview

There are a couple of effective methods to solve this problem. We'll discuss two primary approaches:

Using np.unique() with the return_counts=True parameter.

Leveraging the df.stack().value_counts() method.

Let's dive into each method in detail.

Method 1: Using np.unique()

The first approach utilizes NumPy's np.unique() function, which can be very effective for counting occurrences in an array-like structure. Here's how you can implement it:

Step-by-Step Implementation

Import Necessary Libraries
Make sure to import the required libraries first.

[[See Video to Reveal this Text or Code Snippet]]

Create Your DataFrame
Initialize the DataFrame with your data.

[[See Video to Reveal this Text or Code Snippet]]

Count Occurrences
Use np.unique() to count the occurrences of each item across the DataFrame.

[[See Video to Reveal this Text or Code Snippet]]

Output

The result yields two arrays:

Unique actors: ['Alice', 'Bob', 'Frank', 'Sam', 'Tom']

Their counts: [1, 2, 1, 1, 1]

This method quickly summarizes the counts for each actor in the DataFrame.

Method 2: Using df.stack().value_counts()

The second approach makes use of Pandas' inherent capabilities to reshape the DataFrame and count occurrences.

Step-by-Step Implementation

Stack the DataFrame
The stack() function converts the DataFrame into a Series where all column values are present in a single column.

[[See Video to Reveal this Text or Code Snippet]]

Count the Occurrences
Chain the value_counts() function to tally up the counts of each unique value.

[[See Video to Reveal this Text or Code Snippet]]

Output

This method will give you a Series where the index is the unique actors and the values are the counts. You'll see results similar to this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Both methods provide an efficient means of counting occurrences of items across multiple columns in a Pandas DataFrame. Depending on your specific situation or preference for NumPy vs. Pandas functionality, you can choose either solution. The use of np.unique() is more straightforward for those comfortable with NumPy, while df.stack().value_counts() is an excellent option for those wanting to leverage Pandas' data manipulation power.

Whichever method you choose, counting occurrences in a DataFrame is an important skill in data analysis, and these techniques will certainly help you streamline the process.

Now that you have a clearer understanding of these methods, you can confidently tackle the task of counting items in your own data! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]