Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть The travelling Salesman Problem| Exact Algorithm| Approximate Algorithm|Metaheuristic Algorithms|TSP

  • Maths Lover
  • 2024-06-14
  • 122
The travelling Salesman Problem| Exact Algorithm| Approximate Algorithm|Metaheuristic Algorithms|TSP
#The travelling salesman problem
  • ok logo

Скачать The travelling Salesman Problem| Exact Algorithm| Approximate Algorithm|Metaheuristic Algorithms|TSP бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно The travelling Salesman Problem| Exact Algorithm| Approximate Algorithm|Metaheuristic Algorithms|TSP или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку The travelling Salesman Problem| Exact Algorithm| Approximate Algorithm|Metaheuristic Algorithms|TSP бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео The travelling Salesman Problem| Exact Algorithm| Approximate Algorithm|Metaheuristic Algorithms|TSP

In this video a very famous problem called traveling salesman Problems based questions has been answered.


The Travelling Salesman Problem (TSP) is a classic optimization problem in the field of computer science and operations research. The problem can be defined as follows:

*Problem Statement:*
Given a list of cities and the distances between each pair of cities, the goal is to determine the shortest possible route that visits each city exactly once and returns to the origin city.

*Mathematical Formulation:*

*Input:* A set of \( n \) cities and a distance matrix \( D \), where \( D[i][j] \) represents the distance between city \( i \) and city \( j \).

*Output:* A permutation \( \pi \) of the cities that minimizes the total travel distance:
\[
\text{Minimize} \sum_{i=1}^{n} D[\pi(i)][\pi(i+1)] + D[\pi(n)][\pi(1)]
\]

*Characteristics:*
*Combinatorial Nature:* The TSP is a combinatorial optimization problem, meaning it involves finding an optimal object from a finite set of objects.

*NP-hard:* TSP is classified as NP-hard, indicating that there is no known polynomial-time solution for solving all instances of the problem.

*Variants:*
*Symmetric TSP (STSP):*
The distance between two cities is the same in both directions (i.e., \( D[i][j] = D[j][i] \)).
*Asymmetric TSP (ATSP):*
The distance from one city to another can differ depending on the direction (i.e., \( D[i][j] \neq D[j][i] \)).
*Metric TSP:*
The distances satisfy the triangle inequality (i.e., \( D[i][j] + D[j][k] \geq D[i][k] \)).

*Solution Approaches:*
1. *Exact Algorithms:*
*Brute Force:* Evaluate all possible permutations of the cities to find the shortest route. This method is impractical for large \( n \) due to factorial time complexity (\( O(n!) \)).
*Dynamic Programming (Held-Karp Algorithm):* Uses a dynamic programming approach to solve TSP with a time complexity of \( O(n^2 2^n) \).

2. *Approximation Algorithms:*
*Nearest Neighbor Heuristic:* Start from an arbitrary city, repeatedly visit the nearest unvisited city until all cities are visited. This method is fast but may not yield the optimal solution.
*Christofides' Algorithm:* Guarantees a solution within 1.5 times the optimal solution for metric TSP.

3. *Metaheuristic Algorithms:*
*Genetic Algorithms:* Use concepts from natural selection and genetics to evolve solutions over multiple generations.
*Simulated Annealing:* Mimics the process of annealing in metallurgy to find a good approximation by allowing uphill moves with decreasing probability.
*Ant Colony Optimization:* Inspired by the behavior of ants searching for food, it uses pheromone trails to find good paths.

*Applications:*
*Logistics and Supply Chain Management:* Optimizing delivery routes for goods and services.
*Manufacturing:* Minimizing the movement of tools in automated manufacturing systems.
*Tourism:* Planning efficient travel itineraries.

*Research and Improvements:*
TSP continues to be an active area of research, with ongoing efforts to develop more efficient algorithms and heuristics, both for exact solutions and approximations. Advances in computational power and techniques like quantum computing also hold promise for tackling large instances of the problem.

The Travelling Salesman Problem, despite its simplicity in statement, presents profound challenges and serves as a fundamental problem to understand the limits of computation and optimization.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]