Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Achieve Batch Detection with Darknet using YOLOv4

  • vlogize
  • 2025-10-06
  • 0
How to Achieve Batch Detection with Darknet using YOLOv4
How to do Batch Detection on Darknet architecture?computer visionobject detectionyolodarknet
  • ok logo

Скачать How to Achieve Batch Detection with Darknet using YOLOv4 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Achieve Batch Detection with Darknet using YOLOv4 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Achieve Batch Detection with Darknet using YOLOv4 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Achieve Batch Detection with Darknet using YOLOv4

Learn how to perform batch detection using YOLOv4 and Darknet architecture. Discover tips on optimizing parameters and avoiding common errors such as CUDA memory issues.
---
This video is based on the question https://stackoverflow.com/q/63208756/ asked by the user 'ajayramesh' ( https://stackoverflow.com/u/2094670/ ) and on the answer https://stackoverflow.com/a/64003312/ provided by the user 'Manivannan Murugavel' ( https://stackoverflow.com/u/6559063/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to do Batch Detection on Darknet architecture?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Achieve Batch Detection with Darknet using YOLOv4: A Complete Guide

Batch detection using the Darknet architecture can be a powerful tool for computer vision applications, such as real-time object detection from video feeds. However, if you are new to this process, you might run into common stumbling blocks, especially if you are working with a robust system like the RTX GPU. In this post, we will discuss how to handle batch detection effectively, resolve CUDA memory errors, and optimize your settings for better performance.

Understanding the Problem

You might have encountered a situation where your function to perform batch detection works well for the first batch but fails for subsequent batches, often throwing a CUDA Error: out of memory message. This indicates that the GPU’s memory is being exhausted, often due to the network being loaded multiple times during the execution.

This commonly arises when the network is initialized anew for every batch, which leads to inefficient memory usage and gradual memory depletion, ultimately crashing the process.

Solution Overview

The solution to the problem involves two key adjustments in your current implementation:

Load the Network Once: Instead of loading the network every time you call your detection function, load it just once and reuse that instance for subsequent calls.

Use Global Variables: By declaring the network variable as global, you can maintain its state between function calls without re-initializing it each time.

Implementing the Changes

Below are the precise steps to modify your performBatchDetectV2 function to avoid repeated loading of the network, thus preventing CUDA memory errors.

Step 1: Define Global Variables

First, ensure that you declare the network and meta variables as global outside of your function. This will keep them accessible across multiple invocations of your detection function.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Modify the Function

Now, modify your performBatchDetectV2 function to leverage these global variables:

[[See Video to Reveal this Text or Code Snippet]]

Key Components of Batch Detection Logic

In case you need a refresher, here's a snippet outlining how to process each frame in batch detection:

Image Preprocessing: Convert and resize images to match the network’s expected input dimensions.

Batching: Concatenate the processed images together into a single array before feeding them into the network for detection.

Non-Maximum Suppression (NMS): Use NMS to eliminate overlapping bounding boxes and enhance detection accuracy.

Conclusion

Properly managing network initialization and memory through the use of global variables is crucial to successfully implementing batch detection in Darknet using YOLOv4 architecture. By following the guidelines above, you can optimize your object detection tasks and significantly reduce the likelihood of running into CUDA memory issues.

With these adjustments, continue experimenting with different batch sizes to find the configuration that best suits your hardware and use case.

Remember, efficient memory usage is essential for robust performance, particularly when handling real-time data streams from cameras. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]