Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть #LLM

  • BazAI
  • 2025-09-13
  • 125
#LLM
AIAI Challenges.AI EthicsAI FairnessAI ResearchArtificial IntelligenceBenchmarkingBias MitigationBias in AICancer CareChatGPT-4Data AnnotationFuture of AIGPT-4Google GeminiHAOHealthcare AILLM-as-a-JudgeLlama 2MASMachine LearningModel EvaluationMolecular Tumor BoardMulti-Agent SystemsNLPPrompt EngineeringTBFact
  • ok logo

Скачать #LLM бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно #LLM или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку #LLM бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео #LLM

Large Language Models (LLMs) are at the forefront of AI, but their inherent biases, stemming from vast internet training data, pose significant ethical and fairness challenges. This video delves into the critical role of "LLM-as-a-Judge" systems in evaluating these powerful AI models, ensuring their reliability and ethical deployment.

We explore a comprehensive comparative analysis of leading LLMs, including **ChatGPT-4, Google Gemini, and Llama 2**, evaluating their bias and fairness using benchmarks like **Google BIG-Bench**. Our findings reveal varied levels of biases across models, particularly notable in dimensions such as gender, race, and ethnicity. While each model demonstrates strengths, no single LLM consistently excels across all fairness and bias metrics, underscoring the complexity of bias mitigation. The study also highlights that current benchmarking tools face challenges in capturing the sophisticated manifestations of real-world bias.

The video further explores practical applications and improvement strategies for LLM-as-a-Judge systems. This includes optimizing LLMs' understanding of evaluation tasks through prompt design, fine-tuning via meta evaluation datasets, and refining final results through post-processing methods. Key challenges such as *length bias, positional bias, concreteness bias, self-enhancement bias, and diversity bias* are discussed.

Moreover, we examine the cutting-edge integration of LLM-as-a-Judge in *Multi-Agent Systems (MAS)**, specifically highlighting the **Healthcare Agent Orchestrator (HAO)**. HAO is an LLM-driven multi-agent system designed to automate the generation of accurate patient summaries for **Molecular Tumor Boards (MTBs)**, crucial for complex cancer care management. The **TBFact evaluation framework* is introduced as a "model-as-a-judge" tool to assess the quality of these summaries by operating at the level of clinical factual claims, prioritizing clinically salient information and attributing errors.

This research advocates for a multifaceted approach to AI development, integrating ethical considerations at every stage to ensure equitable technological advancement. Join us as we uncover the intricacies of LLM evaluation, the challenges of bias, and the future directions for creating more equitable and responsible AI technologies.

https://arxiv.org/pdf/2509.06917
https://easyai.studio/dash
https://www.nature.com/articles/s4422...
https://arxiv.org/pdf/2509.00131

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]