Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How GPT-5 Thinks — OpenAI VP of Research Jerry Tworek

  • The MAD Podcast with Matt Turck
  • 2025-10-16
  • 16559
How GPT-5 Thinks — OpenAI VP of Research Jerry Tworek
openai reinforcement learningjerry tworekrl explainedchatgpt reasoningo1 o3 gpt5chain of thoughttest time computerlhf explaineddeepseek grpoopenai researchpre-training vs rlscaling reinforcement learningagentic aicodex openaiai reasoning modelspath to agiopenai culturedeep reinforcement learning
  • ok logo

Скачать How GPT-5 Thinks — OpenAI VP of Research Jerry Tworek бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How GPT-5 Thinks — OpenAI VP of Research Jerry Tworek или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How GPT-5 Thinks — OpenAI VP of Research Jerry Tworek бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How GPT-5 Thinks — OpenAI VP of Research Jerry Tworek

What does it really mean when GPT-5 “thinks”? In this conversation, OpenAI’s VP of Research Jerry Tworek explains how modern reasoning models work in practice—why pretraining and reinforcement learning (RL/RLHF) are both essential, what that on-screen “thinking” actually does, and when extra test-time compute helps (or doesn’t). We trace the evolution from O1 (a tech demo good at puzzles) to O3 (the tool-use shift) to GPT-5 (Jerry calls it “03.1-ish”), and talk through verifiers, reward design, and the real trade-offs behind “auto” reasoning modes.

We also go inside OpenAI: how research is organized, why collaboration is unusually transparent, and how the company ships fast without losing rigor. Jerry shares the backstory on competitive-programming results like ICPC, what they signal (and what they don’t), and where agents and tool use are genuinely useful today. Finally, we zoom out: could pretraining + RL be the path to AGI?

This is the MAD Podcast —AI for the 99%. If you’re curious about how these systems actually work (without needing a PhD), this episode is your map to the current AI frontier.


OpenAI
Website - https://openai.com
X/Twitter - https://x.com/OpenAI

Jerry Tworek
LinkedIn -   / jerry-tworek-b5b9aa56  
X/Twitter - https://x.com/millionint

FIRSTMARK
Website - https://firstmark.com
X/Twitter -   / firstmarkcap  

Matt Turck (Managing Director)
LinkedIn -   / turck  
X/Twitter -   / mattturck  

LISTEN ON:
Spotify - https://open.spotify.com/show/7yLATDS...
Apple - https://podcasts.apple.com/us/podcast...


00:00 - Intro
01:01 - What Reasoning Actually Means in AI
02:32 - Chain of Thought: Models Thinking in Words
05:25 - How Models Decide Thinking Time
07:24 - Evolution from O1 to O3 to GPT-5
11:00 - Before OpenAI: Growing up in Poland, Dropping out of School, Trading
20:32 - Working on Robotics and Rubik's Cube Solving
23:02 - A Day in the Life: Talking to Researchers
24:06 - How Research Priorities Are Determined
26:53 - Collaboration vs IP Protection at OpenAI
29:32 - Shipping Fast While Doing Deep Research
31:52 - Using OpenAI's Own Tools Daily
32:43 - Pre-Training Plus RL: The Modern AI Stack
35:10 - Reinforcement Learning 101: Training Dogs
40:17 - The Evolution of Deep Reinforcement Learning
42:09 - When GPT-4 Seemed Underwhelming at First
45:39 - How RLHF Made GPT-4 Actually Useful
48:02 - Unsupervised vs Supervised Learning
49:59 - GRPO and How DeepSeek Accelerated US Research
53:05 - What It Takes to Scale Reinforcement Learning
55:36 - Agentic AI and Long-Horizon Thinking
59:19 - Alignment as an RL Problem
1:01:11 - Winning ICPC World Finals Without Specific Training
1:05:53 - Applying RL Beyond Math and Coding
1:09:15 - The Path from Here to AGI
1:12:23 - Pure RL vs Language Models

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]