Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Filtering Correct Date and Time Values in a DataFrame using Regex

  • vlogize
  • 2025-07-23
  • 0
Filtering Correct Date and Time Values in a DataFrame using Regex
regex for keeping correct date and time valuespythonpandasdataframe
  • ok logo

Скачать Filtering Correct Date and Time Values in a DataFrame using Regex бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Filtering Correct Date and Time Values in a DataFrame using Regex или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Filtering Correct Date and Time Values in a DataFrame using Regex бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Filtering Correct Date and Time Values in a DataFrame using Regex

Learn how to filter and clean date and time values in a pandas DataFrame using regex and built-in functions to ensure data integrity.
---
This video is based on the question https://stackoverflow.com/q/67371582/ asked by the user 'ljourney' ( https://stackoverflow.com/u/6852544/ ) and on the answer https://stackoverflow.com/a/67371632/ provided by the user 'Quang Hoang' ( https://stackoverflow.com/u/4238408/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: regex for keeping correct date and time values

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Filtering Correct Date and Time Values in a DataFrame using Regex

When working with data, one common challenge is dealing with improperly formatted dates and times. In particular, if your data comes in as strings, you may encounter invalid entries that need to be filtered out. This guide addresses how to cleanse such date and time values in a pandas DataFrame using regular expressions (regex) and data cleaning techniques.

The Problem

Imagine you have a DataFrame consisting of two columns: one for dates and another for times. The strings in these columns might look like this:

[[See Video to Reveal this Text or Code Snippet]]

As you can see, some of the entries do not conform to the expected formats:

Date: must match DDMMMYY

Time: must match HM (Hours and Minutes)

To solve the problem, we aim to exclude entries that violate these formats and also ensure that we filter out entries where:

The day exceeds 31

The hour exceeds 24

The minute exceeds 59

Solution Breakdown

Step 1: Extract Valid Date and Time Formats

First, we can use regex to filter out invalid formats for both the date and time:

[[See Video to Reveal this Text or Code Snippet]]

This code uses regex to capture valid formats:

\d{2}[a-zA-Z]{3}[0-9]{2} for dates (two digits, three letters, two digits)

^\d{4}$ for times (exactly four digits)

Step 2: Replace Invalid Values with NaN

Next, we need to check if the day and hour/minute constraints are not violated. If they are, we replace those invalid values with NaN:

[[See Video to Reveal this Text or Code Snippet]]

Result

After applying the above steps, the DataFrame should look like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In this guide, we tackled how to filter and clean date and time strings in a pandas DataFrame using regex and pd.to_datetime. This not only helps in maintaining data integrity but also prepares our DataFrame for further analytical processing without causing errors due to invalid entries.

By following these steps, you can ensure that your date and time data remain accurate and usable for future data analysis tasks.

Remember, keeping your data clean is crucial for making informed decisions based on your analysis!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]