Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Boost Your R Data Processing: Discover do.call for Efficient Data Handling

  • vlogize
  • 2025-05-25
  • 0
Boost Your R Data Processing: Discover do.call for Efficient Data Handling
More efficiency creating a new variable using for loopperformance
  • ok logo

Скачать Boost Your R Data Processing: Discover do.call for Efficient Data Handling бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Boost Your R Data Processing: Discover do.call for Efficient Data Handling или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Boost Your R Data Processing: Discover do.call for Efficient Data Handling бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Boost Your R Data Processing: Discover do.call for Efficient Data Handling

Learn how to improve data processing efficiency in R by using `do.call` with `rbind` when working with large datasets. Discover quick and effective methods to handle millions of rows without long wait times.
---
This video is based on the question https://stackoverflow.com/q/72365733/ asked by the user 'Pexav01' ( https://stackoverflow.com/u/16277186/ ) and on the answer https://stackoverflow.com/a/72366694/ provided by the user 'GKi' ( https://stackoverflow.com/u/10488504/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: More efficiency creating a new variable using for loop

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Introduction

If you're working with large datasets in R, you may have faced performance issues while looping through data and binding rows together. One particular user expressed their frustration, stating that their millions-long dataset had been stuck for days during a data processing step. So, what is the alternative for creating new variables using for loops that can save time? In this guide, we'll uncover a more efficient way to handle this scenario.

The Problem

The user was using a for loop to process a dataset named Properties, which contains a staggering 32 million entries. The approach taken in their original code is inefficient. Here's a simplified snippet of the code they used:

[[See Video to Reveal this Text or Code Snippet]]

This loop attempts to construct a new data frame df from Properties by recycling through its entries one at a time. While this approach works for smaller datasets, it's not suited to handle millions of rows efficiently—it can slow down significantly and lead to unmanageable wait times.

The Solution: Using do.call with rbind

To optimize this process, we recommend using do.call combined with rbind. This method allows you to bind all elements in Properties at once, reducing the overhead of repeated binding within a loop and resulting in significant performance boosts.

How to Implement the Solution

Here’s how to rewrite the data binding step with do.call:

[[See Video to Reveal this Text or Code Snippet]]

By calling do.call(rbind, Properties), you are instructing R to bind all the data frames in Properties together in one go. This approach is much faster and is particularly useful when you are working with massive datasets.

Performance Benchmark

Let's look at a brief benchmark analysis comparing the original loop approach with the new solution. In this test, we have a sample dataset:

[[See Video to Reveal this Text or Code Snippet]]

Benchmark Results

The results showcased significant performance differences across methods:

dplyr: Approx. 1.53 seconds

rbind with do.call: Approx. 74.19 milliseconds

data.table: Approx. 4.31 milliseconds

unlist with matrix: Approx. 2.8 milliseconds

From the benchmark, it becomes clear that using unlist and matrix is the fastest approach followed closely by data.table. If performance is critical in your data processing pipeline, consider these methods.

Conclusion

In data analysis with R, using loops for large datasets can lead to significant inefficiencies. By replacing the traditional looping approach with do.call(rbind, Properties), you can greatly enhance the speed of your data processing tasks. Further, consider experimenting with the data.table and unlist methods for even faster performance.

Implement these suggestions in your workflow and watch your data processing speed soar!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]