Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Using Pandas to Perform SQL Lookup Based on Column Values

  • vlogize
  • 2025-03-22
  • 0
Using Pandas to Perform SQL Lookup Based on Column Values
SQL Lookup in Pandas read_sql based on column valuesmysqlsqlpandas
  • ok logo

Скачать Using Pandas to Perform SQL Lookup Based on Column Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Using Pandas to Perform SQL Lookup Based on Column Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Using Pandas to Perform SQL Lookup Based on Column Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Using Pandas to Perform SQL Lookup Based on Column Values

Discover how to efficiently perform SQL lookups in `Pandas` using the `read_sql` function with specific column values like `key_hash` for data integration.
---
This video is based on the question https://stackoverflow.com/q/74196149/ asked by the user 'johnnyb' ( https://stackoverflow.com/u/6916973/ ) and on the answer https://stackoverflow.com/a/74198433/ provided by the user 'johnnyb' ( https://stackoverflow.com/u/6916973/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: SQL Lookup in Pandas read_sql based on column values

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Efficient SQL Lookup in Pandas: A Step-By-Step Guide

In data analysis and manipulation, integrating information from different sources is a common requirement. A frequent challenge arises when you need to perform lookups in your SQL database based on specific column values from a Pandas DataFrame. If you have a DataFrame generated periodically and wish to look up data in an existing SQL database, this guide will walk you through how to do that effectively with Pandas and SQL.

The Challenge

You have a DataFrame like the following:

[[See Video to Reveal this Text or Code Snippet]]

Meanwhile, you have a SQL database that contains a similar dataset but spans a longer time period. Your goal is to:

Look up data in the SQL database using the key_hash column from your DataFrame.

Conduct basic functions, such as threshold comparisons, on the retrieved data.

Update your SQL database based on new metrics obtained from your DataFrame.

You may find it tricky to effectively query your SQL database using the key_hash while leveraging Pandas. Let’s break down how you can accomplish this.

The Solution

Step 1: Read the CSV into a DataFrame

First, you will need to load your DataFrame. If your data is in a CSV file, you can do it as follows:

[[See Video to Reveal this Text or Code Snippet]]

This reads your CSV file and stores it in a DataFrame called df.

Step 2: Prepare the SQL Query

To execute a query that looks for specific key_hash values, you must format those values correctly for SQL. You can achieve this by converting the key_hash values from your DataFrame into a string format suitable for the SQL IN clause.

Here is how you can prepare the list of key_hash values:

[[See Video to Reveal this Text or Code Snippet]]

This code generates a string of key_hash values that looks something like "value1","value2","value3".

Step 3: Create the SQL Query

Next, create the SQL query that will fetch rows from your database where key_hash matches any of those in your DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Execute the Query and Retrieve Data

Use the read_sql function from Pandas to execute this query and create a DataFrame out of the results:

[[See Video to Reveal this Text or Code Snippet]]

Here, connector should be your SQL database connection object, which allows you to interact with your SQL database.

Step 5: Merge DataFrames

Now that you have the data from your SQL database, you can merge it with your original DataFrame. This allows you to work with both datasets together:

[[See Video to Reveal this Text or Code Snippet]]

This command performs a left join on the two DataFrames based on the key_hash column.

Conclusion

By following these steps, you can efficiently implement SQL lookups based on column values within your Pandas DataFrame. You can now conduct comparisons and update your SQL database accordingly, streamlining your data analysis process. With this approach, you'll be better equipped to handle relational data across different sources.



Feel free to apply this method in your data analysis tasks, and watch how integrating SQL data into your Pandas workflows transforms your projects!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]