Prove:⁡⁡ (23⁡+⁡8i)/i⁡ = ⁡8 - ⁡23⁡i (Alternate Solution)

Описание к видео Prove:⁡⁡ (23⁡+⁡8i)/i⁡ = ⁡8 - ⁡23⁡i (Alternate Solution)

Complex Numbers: Division of two complex numbers, an alternate solution to the one example above. To prove (23+8i)/i = 8 - 23i, take note that i = 0+i, start with the left-hand side members of the given equation, split it into two individual fractions: 23/i + 8i/i = 23/i + 8. Multiply to 23/i, both its numerator and denominator by the conjugate of the denominator, which is -i or (-i)/(-i). Perform multiplications in both numerator and denominator. Simplify until the right-hand side members of the given equation are obtained.

Take note, imaginary number i = √(-1) or (i^2) = -1.

Mharthy's Channel's Playlists:

Differential Calculus    • Prove f'(x) = nx^(n-1), if f(x) = x^n...  

Complex Numbers    • Prove:⁡⁡  (a⁡+⁡b⁡i)(c⁡+⁡d⁡i)⁡ = ⁡(ac⁡...  

Conversions    • Conversions  

Logarithms, etc.    • Logarithms, etc.  

Analytic Geometry    • Analytic Geometry  

Plane Trigonometry Basics    • Plane Trigonometry Basics  

Fractions    • Fractions  

Systems of first degree/linear equations    • Systems of first degree/linear equations  

Exponents and Radicals    • Exponents and Radicals  

Quadratic Equation and Formula, etc.    • Quadratic Equation and Formula, etc.  

Division of Polynomials, etc.    • Division of Polynomials, etc.  

The Binomial Theorem    • The Binomial Theorem  

Trigonometric Formulas    • Trigonometric Formulas  

The Exact Values of sin & cos Functions of a Right Triangle    • The Exact Values of sin and cos Funct...  

Trigonometric Identities 1    • Trigonometric Identities 1  

Trigonometric Identities 2    • Trigonometric Identities 2  

Trigonometric Identities 3    • Trigonometric Identities 3  

Комментарии

Информация по комментариям в разработке