Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Sequential Models

  • Simons Institute for the Theory of Computing
  • 2022-04-25
  • 545
Sequential Models
Simons Institutetheoretical computer scienceUC BerkeleyComputer ScienceTheory of ComputationTheory of ComputingQuantum Physics and Statistical Causal ModelsMiguel Navascues
  • ok logo

Скачать Sequential Models бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Sequential Models или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Sequential Models бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Sequential Models

Miguel Navascues (Austrian Academy of Sciences)
https://simons.berkeley.edu/talks/seq...
Quantum Physics and Statistical Causal Models

A sequential model is a type of causal network that describes the (discrete) time evolution of a system’s external output, as well as its internal state, and can be regarded as a generalization of a Markov decision process. At each time-step, the system transitions from one internal state to the next through a known equation of motion, which depends on the current state of the system and: (a) unobserved evolution parameters, the same for all times; (b) a number of uncontrolled (and unobserved) variables at each time; and (c) optionally, the (observed) input or policy of an agent interacting with the system. The (observed) output of the system, which can be regarded as a penalty, depends in a known way on all the afore-mentioned variables, the systems’ current internal state and the time. In this talk, I will argue that many tasks in quantum information, but also in other fields, such as mathematical epidemiology, can be formulated as the maximization of the cumulative penalty of a sequential model over variables of type (a) and (b). Next I will introduce general mathematical tools to upper bound this quantity. We will use these tools to bound the maximum probability that a probabilistic finite-state automata generates a specific (finite) sequence of bits and to devise new protocols for entanglement detection in many-body systems. Finally, I will introduce a heuristic to minimize upper bounds on the penalty over all allowed policies. Given any sequential model, the heuristic will generate policies with an acceptable proven worst-case performance with a computational cost comparable to that of establishing the upper bound.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]