Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Why Sub-Agents Supercharge Research: Context Engineering in Multi-Agent Systems

  • Luca Berton
  • 2025-09-17
  • 964
Why Sub-Agents Supercharge Research: Context Engineering in Multi-Agent Systems
sub agentsresearch agentmulti agent systemscontext engineeringdelegationtool callingparallel searchresult synthesisreport generationagent architecturemain agentinformation filteringsummarizationcitationsevidence trackingresearch briefoutput schemaartifactsnotes scratchpadreliabilitypredictabilityorchestrationautonomous agentsfunction callingagent designliterature reviewdue diligencecompetitive analysismarket researchAIML
  • ok logo

Скачать Why Sub-Agents Supercharge Research: Context Engineering in Multi-Agent Systems бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Why Sub-Agents Supercharge Research: Context Engineering in Multi-Agent Systems или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Why Sub-Agents Supercharge Research: Context Engineering in Multi-Agent Systems бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Why Sub-Agents Supercharge Research: Context Engineering in Multi-Agent Systems

In this clip we unpack a powerful pattern used in modern agent systems: dedicated research sub-agents. Instead of the main agent calling a search tool directly, it delegates to a focused research agent that runs many searches (often in parallel), filters noise, condenses findings, and returns a clean report back to the main agent.

The result? Sharper context, less clutter, better answers. This is context engineering in action.

What you’ll learn

The delegation pattern: Main agent → research sub-agent → summarized report.

Why it works: Sub-agents see only the current task, so their context is laser-focused.

Cleaner inputs for the main agent: It gets the distilled report—not every noisy intermediate result.

Parallel search → single brief: Run wide, then compress into a tight artifact the main agent can use.

When to use it: Deep research, due diligence, competitive analysis, literature sweeps, market scans.

Known trade-offs: The main agent loses visibility into “how” results were gathered unless you record artifacts or attach citations.

Architecture at a glance

Task framing: Main agent creates a research brief (objective, scope, constraints, deliverable format).

Sub-agent execution: Research agent runs searches, clusters sources, extracts signals, takes notes.

Synthesis: Research agent produces a structured report (key findings, evidence, gaps, next steps).

Handoff: Report returns to the main agent as a single tool result or file reference for the next decision.

Best practices (copy/paste into your system prompt or spec)

Define the brief: topic, must-answer questions, inclusion/exclusion rules, time window, regions, required citations.

Require artifacts: notes.jsonl, sources.csv, report.md—so you don’t lose traceability.

Scoring & filtering: prefer primary sources; rank by credibility, recency, corroboration.

Structure the output: Summary → Evidence → Contradictions → Risks → Open Questions → References.

Budget & limits: cap queries, pages fetched, and tokens; allow the sub-agent to request an extension with reasons.

Citations: enforce URL + title + date for each claim; flag unverified statements.

Common pitfalls & fixes

Pitfall: Main agent asks vague questions → weak research.
Fix: Template the brief with explicit questions and acceptance criteria.

Pitfall: Sub-agent returns a wall of text.
Fix: Mandate a schema or headings; reject responses that omit sources.

Pitfall: Lost transparency.
Fix: Always return an appendix with search trails and discarded leads.

Pitfall: Redundant searches.
Fix: De-dupe by domain/title; cache recent queries and reuse notes.

Minimal research brief template

Goal: What decision will this research inform?

Scope: Topic, timeframe, geography, depth.

Must answer: 3–5 concrete questions.

Deliverable: Markdown report with sections + references.

Constraints: Time/budget limits, allowed sources, language.

Definition of done: Rubric (e.g., ≥8 credible sources, conflicting views addressed, risks listed).

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]