Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть |Carsten van Weelden, Beata Nyari | Siamese LSTM in Keras: Learning Character-Based Phrase

  • PyData
  • 2017-04-25
  • 6185
|Carsten van Weelden, Beata Nyari | Siamese LSTM in Keras: Learning Character-Based Phrase
  • ok logo

Скачать |Carsten van Weelden, Beata Nyari | Siamese LSTM in Keras: Learning Character-Based Phrase бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно |Carsten van Weelden, Beata Nyari | Siamese LSTM in Keras: Learning Character-Based Phrase или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку |Carsten van Weelden, Beata Nyari | Siamese LSTM in Keras: Learning Character-Based Phrase бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео |Carsten van Weelden, Beata Nyari | Siamese LSTM in Keras: Learning Character-Based Phrase

PyData Amsterdam 2017

Siamese LSTM in Keras: Learning Character-Based Phrase Representations

In this talk we will explain how we solved the problem of classifying job titles into a job ontology with more than 5000 different classes. We do this by learning a character-based representation of job titles with a B-LSTM encoder trained as a Siamese network. You will learn about the methods in theory and how these can be implemented with the Keras deep learning library.

Learning representations of textual data is a crucial component in NLP systems. An important application is linking entities extracted from unstructured text to a knowledge base. In our use case, the entities are job titles extracted from resumes or vacancies, and the knowledge base is a hierarchical job title taxonomy. Successfully linking job titles is particularly important in our application, as it directly influences the performance of information retrieval- and data analytics solutions.

In this talk we will explain how we solved the problem of classifying job titles into a job ontology with more than 5000 different classes. We do this by learning a character-based representation of job titles with a B-LSTM encoder trained as a Siamese network. You will learn about the methods in theory and how these can be implemented with the Keras deep learning library.

We will walk you through how we constructed training examples in a domain where large-scale manual annotation is nearly impossible. We will show you how we built a framework to test invariances we would like to model in our data, such as extra words in automatically extracted phrases (e.g. "class 1 driver using own vehicle, london") and spelling variation (e.g. “C Sharp” vs “C#”). Lastly we introduce a negative sampling strategy such that the network learns to recognize subtle differences between phrases (e.g. “pipe fitter” versus “ship fitter”). 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]