Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть FAST '19 - Sliding Look-Back Window Assisted Data Chunk Rewriting for Improving Deduplication...

  • USENIX
  • 2019-04-09
  • 482
FAST '19 - Sliding Look-Back Window Assisted Data Chunk Rewriting for Improving Deduplication...
usenixtechnologyconferenceopen access
  • ok logo

Скачать FAST '19 - Sliding Look-Back Window Assisted Data Chunk Rewriting for Improving Deduplication... бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно FAST '19 - Sliding Look-Back Window Assisted Data Chunk Rewriting for Improving Deduplication... или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку FAST '19 - Sliding Look-Back Window Assisted Data Chunk Rewriting for Improving Deduplication... бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео FAST '19 - Sliding Look-Back Window Assisted Data Chunk Rewriting for Improving Deduplication...

Sliding Look-Back Window Assisted Data Chunk Rewriting for Improving Deduplication Restore Performance
Zhichao Cao, University of Minnesota; Shiyong Liu, Ocean University of China; Fenggang Wu, University of Minnesota; Guohua Wang, South China University of Technology; Bingzhe Li and David H.C. Du, University of Minnesota

Abstract:
Data deduplication is an effective way of improving storage space utilization. The data generated by deduplication is persistently stored in data chunks or data containers (a container consisting of a few hundreds or thousands of data chunks). The data restore process is rather slow due to data fragmentation and read amplification. To speed up the restore process, data chunk rewrite (a rewrite is to store a duplicate data chunk) schemes have been proposed to effectively improve data chunk locality and reduce the number of container reads for restoring the original data. However, rewrites will decrease the deduplication ratio since more storage space is used to store the duplicate data chunks.

To remedy this, we focus on reducing the data fragmentation and read amplification of container-based deduplication systems. We first propose a flexible container referenced count based rewrite scheme, which can make a better tradeoff between the deduplication ratio and the number of required container reads than that of capping which is an existing rewrite scheme. To further improve the rewrite candidate selection accuracy, we propose a sliding look-back window based design, which can make more accurate rewrite decisions by considering the caching effect, data chunk localities, and data chunk closeness in the current and future windows. According to our evaluation, our proposed approach can always achieve a higher restore performance than that of capping especially when the reduction of deduplication ratio is small.

View the full FAST '19 program at https://www.usenix.org/conference/fas...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]