Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering Pandas: How to Dynamically Select DataFrame Columns from SQL Queries

  • vlogize
  • 2025-05-27
  • 3
Mastering Pandas: How to Dynamically Select DataFrame Columns from SQL Queries
Use fetched result to select columns in dataframepythonpandasdataframe
  • ok logo

Скачать Mastering Pandas: How to Dynamically Select DataFrame Columns from SQL Queries бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering Pandas: How to Dynamically Select DataFrame Columns from SQL Queries или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering Pandas: How to Dynamically Select DataFrame Columns from SQL Queries бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering Pandas: How to Dynamically Select DataFrame Columns from SQL Queries

Learn how to dynamically select columns from a pandas DataFrame based on SQL query results without explicitly typing them out.
---
This video is based on the question https://stackoverflow.com/q/66598026/ asked by the user 'jcoke' ( https://stackoverflow.com/u/3396351/ ) and on the answer https://stackoverflow.com/a/66598072/ provided by the user 'jezrael' ( https://stackoverflow.com/u/2901002/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Use fetched result to select columns in dataframe

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering Pandas: How to Dynamically Select DataFrame Columns from SQL Queries

When working with data in Python, especially using libraries like pandas, a common challenge arises: dynamically selecting specific columns from a DataFrame without hardcoding their names. This issue often occurs after querying a SQL database, where the retrieved column names may need to be utilized to filter data in a pandas DataFrame. In this post, we'll explore how to achieve this efficiently, tackling the common pitfalls along the way.

The Problem Scenario

Imagine you have a Python script that connects to a SQL database, executing a query that retrieves specific column names based on certain criteria. You already have the following SQL query and code snippet to get started:

[[See Video to Reveal this Text or Code Snippet]]

After querying, you might see output like this:

[[See Video to Reveal this Text or Code Snippet]]

The challenge arises when you want to select these columns from a DataFrame like this:

[[See Video to Reveal this Text or Code Snippet]]

However, instead of selecting individual columns, you're confronted with an error indicating that pandas is trying to interpret the whole string as one single column name. This results in a KeyError because none of the column names match.

The Solution

To solve this issue, we need to ensure that the cols list contains individual column names, not a single concatenated string. Let's break down the solution into clear steps.

Step 1: Adjust the Retrieval of Columns

Instead of allowing the fetchall() method to return a single concatenated string, we can split these strings into a list of individual column names. Here are two effective methods to achieve this:

Method 1: Using split() directly on the fetched result:

[[See Video to Reveal this Text or Code Snippet]]

Method 2: Using List Comprehension:

[[See Video to Reveal this Text or Code Snippet]]

Both methods work effectively, but the second method is more versatile as it caters to potentially more columns if your query is expanded.

Step 2: Printing the DataFrame

Once the column names are correctly split and stored in the cols variable, you can now safely select these columns from your DataFrame without encountering an error:

[[See Video to Reveal this Text or Code Snippet]]

This should yield a DataFrame output like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following the methods outlined above, you can dynamically select columns from your pandas DataFrame based on SQL query results without hardcoding the column names. This approach not only improves code efficiency but also enhances maintainability, especially when working with diverse datasets.

Create more dynamic and flexible data pipeline scripts with pandas today, and avoid the hassle of constant adjustments to your code! Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]