Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть USENIX Security '23 - ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning..

  • USENIX
  • 2023-11-30
  • 161
USENIX Security '23 - ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning..
usenixtechnologyconferenceopen access
  • ok logo

Скачать USENIX Security '23 - ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning.. бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно USENIX Security '23 - ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning.. или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку USENIX Security '23 - ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning.. бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео USENIX Security '23 - ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning..

USENIX Security '23 - ASSET: Robust Backdoor Data Detection Across a Multiplicity of Deep Learning Paradigms

Minzhou Pan and Yi Zeng, Virginia Tech; Lingjuan Lyu, Sony AI; Xue Lin, Northeastern University; Ruoxi Jia, Virginia Tech

Backdoor data detection is traditionally studied in an end-to-end supervised learning (SL) setting. However, recent years have seen the proliferating adoption of self-supervised learning (SSL) and transfer learning (TL), due to their lesser need for labeled data. Successful backdoor attacks have also been demonstrated in these new settings. However, we lack a thorough understanding of the applicability of existing detection methods across a variety of learning settings. By evaluating 56 attack settings, we show that the performance of most existing detection methods varies significantly across different attacks and poison ratios, and all fail on the state-of-the-art clean-label backdoor attack which only manipulates a few training data's features with imperceptible noise without changing labels. In addition, existing methods either become inapplicable or suffer large performance losses when applied to SSL and TL. We propose a new detection method called Active Separation-via Offset (ASSET), which actively induces different model behaviors between the backdoor and clean samples to promote their separation. We also provide procedures to adaptively select the number of suspicious points to remove. In the end-to-end SL setting, ASSET is superior to existing methods in terms of consistency of defensive performance across different attacks and robustness to changes in poison ratios; in particular, it is the only method that can detect the state-of-the-art clean-label attack. Moreover, ASSET's average detection rates are higher than the best existing methods in SSL and TL, respectively, by 69.3% and 33.2%, thus providing the first practical backdoor defense for these emerging DL settings.

View the full USENIX Security '23 program at https://www.usenix.org/conference/use...

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]