Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Discovering the Weighted Median: An Efficient Python Approach

  • vlogize
  • 2025-07-28
  • 5
Discovering the Weighted Median: An Efficient Python Approach
weighted median and list comprehensionpythonnumpy
  • ok logo

Скачать Discovering the Weighted Median: An Efficient Python Approach бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Discovering the Weighted Median: An Efficient Python Approach или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Discovering the Weighted Median: An Efficient Python Approach бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Discovering the Weighted Median: An Efficient Python Approach

Learn how to compute the `weighted median` using Python in an efficient way, alongside comparisons and list comprehensions.
---
This video is based on the question https://stackoverflow.com/q/68254803/ asked by the user 'Nik' ( https://stackoverflow.com/u/7128910/ ) and on the answer https://stackoverflow.com/a/68256428/ provided by the user 'joostblack' ( https://stackoverflow.com/u/12952263/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: weighted median and list comprehension

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Weighted Median

When working with data, especially in statistics and data analysis, you might come across the need to calculate a weighted median. Unlike the standard median, where all values are treated equally, a weighted median assigns different weights to each value, indicating their importance or frequency in the dataset.

Problem Statement

Let’s say you have a dataset represented by two lists: a list of unique values and a corresponding list of weights. The weights indicate how often each value appears. The challenge is to compute the weighted median of these lists efficiently, especially when the list of weights is large.

Example Input

Consider the following lists:

[[See Video to Reveal this Text or Code Snippet]]

Here, the value 1 appears twice, 2 once, 3 twice, and 4 three times.

The Inefficient Way

One straightforward approach to compute the weighted median is using NumPy's median function with np.repeat, which expands the values list according to the weights. The code looks something like this:

[[See Video to Reveal this Text or Code Snippet]]

Although this is simple, it can be inefficient because it generates a potentially huge list when any of the weights are large.

Finding an Efficient Solution

To compute the weighted median without generating the entire weighted list, we can use a more streamlined algorithm. Here’s a custom function to achieve that:

[[See Video to Reveal this Text or Code Snippet]]

How This Works

Initialization: Start by initializing a sum (s) and calculating the total count of items (n).

Iterate Over Weights: For each weight, add it to the sum.

Check for Median:

If the cumulative sum exceeds half of n, that means the median is reached.

Depending on whether the total number of weights is even or odd, compute the median accordingly.

Performance Comparison

To compare performance between the two methods, we can utilize the timeit library in Python:

[[See Video to Reveal this Text or Code Snippet]]

Results

After running 1000 cycles of both functions, you might observe:

Function median_1 takes significantly longer (e.g., 0.051 seconds).

Function median_3 operates much faster (e.g., 0.001 seconds).

When you call these functions, you’ll get the same result, ensuring that both methods compute the weighted median correctly.

List Comprehension Alternative

Lastly, if you're curious about writing a version of the np.repeat function as a list comprehension, here's one option:

[[See Video to Reveal this Text or Code Snippet]]

This constructs a list similar to np.repeat, but again, this should be used cautiously depending on the size of your original data.

Conclusion

Now you have a clear understanding of how to compute the weighted median efficiently in Python, using a custom algorithm. This method not only saves time but also optimizes memory usage, particularly valuable for large datasets. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]