Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть TL;DR 🔊 Introduction to Statistical Learning: Episode 8, Tree-Based Methods

  • Brandon Foltz
  • 2023-11-09
  • 464
TL;DR 🔊 Introduction to Statistical Learning: Episode 8, Tree-Based Methods
brandon foltzstats 101statistics 101TLDR statisticsTL;DR statisticsmachinelearningTL;DR machinelearningTree-Based MethodsRegression TreesBaggingRandom ForestsBoostingBayesian Additive Regression TreesHealthcare Predictionsclassification treesbayesian regression treeslogistic regressionbinary classificationdecision treespruning decision treesdecision tree splitting rulesplitting rule
  • ok logo

Скачать TL;DR 🔊 Introduction to Statistical Learning: Episode 8, Tree-Based Methods бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно TL;DR 🔊 Introduction to Statistical Learning: Episode 8, Tree-Based Methods или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку TL;DR 🔊 Introduction to Statistical Learning: Episode 8, Tree-Based Methods бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео TL;DR 🔊 Introduction to Statistical Learning: Episode 8, Tree-Based Methods

🌳 *Chapter 8: Exploring the Forest - The Power of Tree-Based Methods* 🌲

0:00 Introduction
0:38 Learning Objectives
1:04 Key Points
1:44 Real-World Application
2:17 Conclusion

Journey through the vast expanse of tree-based methods with Chapter 8! Explore how decision trees branch out and divide the world of data, allowing for precise predictions. Dive deeper and uncover the enhanced techniques of bagging, random forests, boosting, and the intriguing Bayesian additive regression trees.

🔹 *Main Takeaways:*
1. Embark on an exploration of tree-based methods, the unsung heroes of regression and classification. Discover how they simplify and demystify complex predictor spaces.
2. Grasp the art of building a regression tree using recursive binary splitting, and watch as data is segmented efficiently, optimizing predictions.
3. Dive deeper into the collective strength of multiple trees through techniques like bagging, random forests, and boosting. Discover how Bayesian additive regression trees bring a twist to the tale.
4. Traverse the intricate process of tree pruning, a craft that ensures models remain robust and don't overextend their predictions.

🔹 *Real-World Glimpses:*
Step into the world of healthcare, where tree-based methods have found a pivotal role. See how decision trees can predict a patient's health trajectory based on multifaceted factors, guiding healthcare professionals in strategizing preventative and treatment measures.

🔹 *Who Should Tune In:*
Aspiring data scientists wanting to unravel the essence of decision trees.
Healthcare professionals keen on harnessing data for patient-centric insights.
Anyone intrigued by the confluence of simplicity and sophistication in predictive modeling.

🔹 *Concluding Thoughts:*
Chapter 8 sheds light on the forest of tree-based methods, showcasing how simplicity in design can lead to profound insights. Whether it's single trees branching out or entire forests coming together, these methods are instrumental in deriving actionable intelligence from data. Dive in and embrace the potential of tree-based methods as they chart a course through data, helping navigate challenges and uncovering actionable insights.

Journey through Chapter 8 and see data in a new light as tree-based methods root themselves firmly, branching out to offer unparalleled insights! 🌳🍃🔍.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021).
An Introduction to Statistical Learning with Applications in R (2nd ed.). Springer.
Book URL: https://www.statlearning.com/

Note: This channel is not affiliated with Springer Publishing or the authors and just aims to provide helpful learning resources for the world.

#statistics #machinelearning #datascience #education #dataanalytics

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]