Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Episode 83 — Class Imbalance: Why It Breaks Metrics and How to Fix Decisions

  • Bare Metal Cyber
  • 2026-01-26
  • 0
Episode 83 — Class Imbalance: Why It Breaks Metrics and How to Fix Decisions
  • ok logo

Скачать Episode 83 — Class Imbalance: Why It Breaks Metrics and How to Fix Decisions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Episode 83 — Class Imbalance: Why It Breaks Metrics and How to Fix Decisions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Episode 83 — Class Imbalance: Why It Breaks Metrics and How to Fix Decisions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Episode 83 — Class Imbalance: Why It Breaks Metrics and How to Fix Decisions

This episode addresses class imbalance as a decision and evaluation problem, because DataX scenarios frequently involve rare events where accuracy and naive thresholds produce misleading comfort while the model fails on the cases that matter. You will define class imbalance as a large difference in prevalence between classes, such as rare fraud, rare failures, or rare security incidents, and connect it to why metrics like accuracy and even ROC AUC can hide poor minority-class performance. We’ll explain how imbalance changes predictive value: when positives are rare, many flagged cases can be false positives even with a decent model, which makes thresholding and precision management essential. You will practice scenario cues like “rare positives,” “limited investigation capacity,” “high cost of missed cases,” and “need reliable ranking,” and choose responses such as using precision-recall evaluation, adjusting thresholds, applying class weights, or changing sampling strategies while keeping evaluation distribution realistic. Best practices include segment-level reporting, calibration checks, and aligning the operating point to costs and capacity rather than optimizing a single generic score. Troubleshooting considerations include leakage that appears as high minority recall, instability across folds due to few positives, and drift in prevalence that breaks thresholds and workflow assumptions in production. Real-world examples include fraud triage, predictive maintenance, safety monitoring, and alerting systems where the minority class represents the real risk and the majority class represents normal operations. By the end, you will be able to select exam answers that identify imbalance-driven metric failure, propose decision-focused fixes, and explain how to maintain reliable performance when rare events drive the business objective. Produced by BareMetalCyber.com, where you’ll find more cyber audio courses, books, and information to strengthen your educational path. Also, if you want to stay up to date with the latest news, visit DailyCyber.News for a newsletter you can use, and a daily podcast you can commute with.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]