Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Remove Rows with All Zeros in R DataFrames: Base R and dplyr Solutions

  • vlogize
  • 2025-04-17
  • 4
How to Remove Rows with All Zeros in R DataFrames: Base R and dplyr Solutions
R - Remove rows from dataframe that contain only zeros in numeric columns base R and pipe-friendly mdataframedplyr
  • ok logo

Скачать How to Remove Rows with All Zeros in R DataFrames: Base R and dplyr Solutions бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Remove Rows with All Zeros in R DataFrames: Base R and dplyr Solutions или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Remove Rows with All Zeros in R DataFrames: Base R and dplyr Solutions бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Remove Rows with All Zeros in R DataFrames: Base R and dplyr Solutions

Learn efficient methods to remove rows from R dataframes that consist entirely of zeros, utilizing both base R and dplyr along with practical examples.
---
This video is based on the question https://stackoverflow.com/q/67754119/ asked by the user 'E. Moore' ( https://stackoverflow.com/u/14759240/ ) and on the answer https://stackoverflow.com/a/67754388/ provided by the user 'GuedesBF' ( https://stackoverflow.com/u/13972333/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: R - Remove rows from dataframe that contain only zeros in numeric columns, base R and pipe-friendly methods?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Removing Rows with All Zeros in R DataFrames: Practical Solutions Using Base R and dplyr

In data analysis, it’s common to encounter datasets that contain unnecessary rows filled with zeros. These rows may skew your analysis and lead to misinterpretations of the data. If you're working with a dataframe in R and need to efficiently remove rows that contain only zeros in numeric columns (while maintaining non-numeric columns), you’re in the right place. In this post, we’ll explore both base R and dplyr/tidyverse methods to achieve this.

The Problem: Identifying Rows to Remove

Imagine you have a dataframe that includes both factor and numeric columns. You want to delete rows that sum to zero across the numeric columns but retain the factor columns for context. The goal is clear: remove rows containing only zeros without creating unnecessary intermediate columns.

Sample DataFrame

Let’s take a look at a sample dataframe:

[[See Video to Reveal this Text or Code Snippet]]

Solution: Removing Zero Rows with Base R

Using Logical Condition and rowSums()

One straightforward approach in base R is to use logical subsetting combined with rowSums(). Here's how:

[[See Video to Reveal this Text or Code Snippet]]

This code snippet works as follows:

sapply(df, is.numeric) creates a logical index for numeric columns.

!= 0 checks if values are not equal to zero.

rowSums() computes sums across rows to identify those with non-zero sums.

Solution: Removing Zero Rows with dplyr

Using filter() and rowSums()

Now, using dplyr, you can achieve the same without creating any intermediate columns. Here’s a clean method:

[[See Video to Reveal this Text or Code Snippet]]

across(where(is.numeric)) selects all numeric columns.

rowSums() calculates row sums to determine if they are non-zero.

Handling Negative Values

If your dataset has negative values, you want to consider rows containing at least one non-zero value:

[[See Video to Reveal this Text or Code Snippet]]

More Advanced dplyr Techniques

For even more advanced users looking for concise methods, consider utilizing reduce() from the purrr package:

[[See Video to Reveal this Text or Code Snippet]]

Alternatively, you can use reduce() directly for a logical OR operation on the numeric columns:

[[See Video to Reveal this Text or Code Snippet]]

The Cleanest Approach: Using if_any()

With dplyr’s new if_any() function, you can further streamline your filtering process:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Removing rows filled with zeros in your dataframe can vastly improve data quality and analysis effectiveness. Whether you choose a base R method or one utilizing dplyr, both provide efficient solutions that allow you to maintain your non-numeric data while focusing on improving your numeric data analysis.

Now that you know how to tackle this challenge, don't hesitate to apply these methods to clean up your datasets! Happy coding in R!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]