Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Prompt Engineering with Python and Pandas : Customizing GPT models with Feedback loop

  • Kamalraj M M
  • 2023-03-05
  • 943
Prompt Engineering with Python and Pandas : Customizing GPT models with Feedback loop
pythonpython coding with chat gpthow to use chat gpt with pythonprompt engineeringpython and chatgptmachine learning optimization modelsai and pythonquestion answering pythonnlp question answering pythondata engineeringchat gpt promptschat gpt prompt engineeringchatgpt promptschat gpt tutorialhow to find prompts for chat gptprompt engineering chat gptchat gpt promptingmake prompts for chat gptchat gpt exampleschat gpt prompt
  • ok logo

Скачать Prompt Engineering with Python and Pandas : Customizing GPT models with Feedback loop бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Prompt Engineering with Python and Pandas : Customizing GPT models with Feedback loop или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Prompt Engineering with Python and Pandas : Customizing GPT models with Feedback loop бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Prompt Engineering with Python and Pandas : Customizing GPT models with Feedback loop

Exploring the area of natural language processing (NLP) and customizing GPT models with the help of Python and Pandas and implement a feedback loop, might sound like daunting task. In fact it is opposite once you understand what happens below the hood. It all boils down to making the model learn and create a better part of itself. Learning to solve simple challenges first is going to take from start to end in no time.

Code used in the video can be located at
https://github.com/insightbuilder/pyt...

To begin with, GPT (Generative Pre-trained Transformer) models are one of the most popular models for natural language generation tasks like text completion, summarization, translation, and more. They are based on a transformer architecture that captures long term dependencies in the data and generates highly coherent text.

With the help of Pandas, you can preprocess and filter the data and the prompt skeletor, and feed it into a GPT model. This will generate new text based on the patterns and structure learned from your input data. However, the generated text may not always be accurate or relevant to your intended purpose.

This is where the concept of a feedback loop comes in. After generating text using a GPT model, you can get feedback from users or stakeholders to improve the relevance and accuracy of the generated text. This feedback can be used to fine-tune the GPT model and improve its performance for future generations.

Moreover, you can also explore customizing GPT models with additional training data specific to your domain (if available) to enhance the performance further.
In summary, customizing GPT models with Pandas and a feedback loop can help you generate highly relevant and accurate text for your target audience or domain. This can be an exciting area to explore for any Python enthusiast looking to delve into the world of NLP

PS: Got a question or have a feedback on my content. Get in touch
By leaving a Comment in the video
@twitter Handle is @KQrios
@medium   / about  
@github https://github.com/Kamalabot

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]