Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Convert Time to Timezone in Pandas DataFrame

  • vlogize
  • 2025-04-05
  • 1
How to Convert Time to Timezone in Pandas DataFrame
pandas: convert time to timezone into new columnpandasdatetimetimezoneconvertersdatetimeindex
  • ok logo

Скачать How to Convert Time to Timezone in Pandas DataFrame бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Convert Time to Timezone in Pandas DataFrame или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Convert Time to Timezone in Pandas DataFrame бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Convert Time to Timezone in Pandas DataFrame

Learn how to dynamically convert time to timezone in a Pandas DataFrame with this step-by-step guide that breaks down the process clearly.
---
This video is based on the question https://stackoverflow.com/q/73130607/ asked by the user 'its_me' ( https://stackoverflow.com/u/13757118/ ) and on the answer https://stackoverflow.com/a/73131064/ provided by the user 'Naveed' ( https://stackoverflow.com/u/3494754/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: pandas: convert time to timezone into new column

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Converting Time to Timezone in a Pandas DataFrame

When working with time data in a Pandas DataFrame, one common task is converting timestamps to a specific timezone. This process becomes particularly challenging when each row in your DataFrame may contain a different timezone identifier. In this guide, we will solve the problem of dynamically converting time to timezone within a DataFrame by utilizing a straightforward method. Whether you're new to Pandas or looking to sharpen your data manipulation skills, this guide is tailored for you.

The Challenge

Imagine you have a DataFrame with timestamps and their corresponding timezone identifiers, but you are struggling to create a new column that reflects the converted time. Your DataFrame may look something like this:

time_gmttz_idtz_time2022-03-31 06:53:53.796000+00:00NaNNaT2022-03-31 07:09:00.903000+00:00Europe/Zurich2022-03-31 09:09:00.903000+02:002022-03-31 07:09:50.627000+00:00Asia/Seoul2022-03-31 16:09:50.627000+09:002022-03-31 07:22:07.028000+00:00Europe/Vilnius2022-03-31 10:22:07.028000+03:00The goal is to create a new column that automatically converts each time entry based on its corresponding timezone identifier.

The Solution

Let's walk through a clean and efficient solution to achieve this. The steps involve using a combination of Pandas' apply function and the tz_convert method.

Step 1: Convert Time to Datetime

First, ensure that the time column (time_gmt) is in the correct datetime format. This is essential for performing timezone conversions.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Use the Apply Method

Now, you'll utilize the apply function to iterate over the DataFrame's rows. This will allow you to apply the timezone conversion dynamically for each row based on the corresponding tz_id.

[[See Video to Reveal this Text or Code Snippet]]

Understanding the Code

~df['tz_id'].isna(): This filters the DataFrame to only process rows that have a valid timezone identifier.

apply(lambda x: ...): The lambda function takes each row (represented by x), retrieves the time_gmt, and converts it to the timezone specified in tz_id.

Final DataFrame

After running the above steps, your DataFrame should resemble this:

time_gmttz_idconverted_time2022-03-31 06:53:53.796000+00:00NaNNaT2022-03-31 07:09:00.903000+00:00Europe/Zurich2022-03-31 09:09:00.903000+02:002022-03-31 07:09:50.627000+00:00Asia/Seoul2022-03-31 16:09:50.627000+09:002022-03-31 07:22:07.028000+00:00Europe/Vilnius2022-03-31 10:22:07.028000+03:00Conclusion

By following these steps, you can efficiently convert timestamps to their respective timezones in a Pandas DataFrame. This approach enhances your ability to handle time series data accurately, enabling you to derive insights that consider the influence of time zones.

If you have any further questions or need clarification, feel free to reach out. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]